mirdata
Release 0.3.8

The mirdata development team

Nov 03, 2023

1 Citing mirdata

2 Contributing to mirdata
Bibliography

Python Module Index

Index

CONTENTS

305
307

309

mirdata, Release 0.3.8

mirdata is an open-source Python library that provides tools for working with common Music Information Retrieval
(MIR) datasets, including tools for:

* downloading datasets to a common location and format
« validating that the files for a dataset are all present
* loading annotation files to a common format, consistent with mir_eval

* parsing track level metadata for detailed evaluations.

pip install mirdata

For more details on how to use the library see the Tutorial.

CONTENTS 1

mirdata, Release 0.3.8

2 CONTENTS

CHAPTER
ONE

CITING MIRDATA

If you are using the library for your work, please cite the version you used as indexed at Zenodo:

If you refer to mirdata’s design principles, motivation etc., please cite the following paper':

When working with datasets, please cite the version of mirdata that you are using (given by the DOI above) AND
include the reference of the dataset, which can be found in the respective dataset loader using the cite() method.

I Rachel M. Bittner, Magdalena Fuentes, David Rubinstein, Andreas Jansson, Keunwoo Choi, and Thor Kell. “mirdata: Software for Repro-
ducible Usage of Datasets.” In Proceedings of the 20th International Society for Music Information Retrieval (ISMIR) Conference, 2019.:

https://doi.org/10.5281/zenodo.4355859
https://magdalenafuentes.github.io/publications/2019_ISMIR_mirdata.pdf
https://doi.org/10.5281/zenodo.3527750

mirdata, Release 0.3.8

4 Chapter 1. Citing mirdata

CHAPTER
TWO

CONTRIBUTING TO MIRDATA

We welcome contributions to this library, especially new datasets. Please see Contributing for guidelines.
¢ Issue Tracker

e Source Code

2.1 Overview

pip install mirdata

mirdata is a library which aims to standardize how audio datasets are accessed in Python, removing the need for
writing custom loaders in every project, and improving reproducibility. Working with datasets usually requires an
often cumbersome step of downloading data and writing load functions that load related files (for example, audio and
annotations) into a standard format to be used for experimenting or evaluating. mirdata does all of this for you:

import mirdata
print(mirdata.list_datasets())

tinysol = mirdata.initialize('tinysol")
tinysol.download()

get annotations and audio for a random track
example_track = tinysol.choice_track()
instrument = example_track.instrument_full
pitch = example_track.pitch

y, sr = example_track.audio

mirdata loaders contain methods to:
* download(): download (or give instructions to download) a dataset

e load_*(): load a dataset’s files (audio, metadata, annotations, etc.) into standard formats, so you don’t have to
write them yourself which are compatible with mir_eval and jams.

* validate(): validate that a dataset is complete and correct

e cite(): quickly print a dataset’s relevant citation

¢ access track and multitrack objects for grouping multiple annotations for a particular track/multitrack
* and more

See the Tutorial for a detailed explanation of how to get started using this library.

https://github.com/mir-dataset-loaders/mirdata/issues
https://github.com/mir-dataset-loaders/mirdata

mirdata, Release 0.3.8

2.1.1 mirdata design principles

Ease of use and contribution

We designed mirdata to be easy to use and easy to contribute to. mirdata simplifies the research pipeline consider-
ably, facilitating research in a wider diversity of tasks and musical datasets. We provide detailed examples on how to
interact with the library in the Tutorial, as well as detail explanation on how to contribute in Contributing. Additionally,
we have a repository of Jupyter notebooks with usage examples of the different datasets.

Reproducibility

We aim for mirdata to aid in increasing research reproducibility by providing a common framework for MIR re-
searchers to compare and validate their data. If mistakes are found in annotations or audio versions change, using
mirdata, the community can fix mistakes while still being able to compare methods moving forward.

canonical versions

The dataset loaders in mirdata are written for what we call the canonical version of a dataset. Whenever
possible, this should be the official release of the dataset as published by the dataset creator/s. When this is not possible,
(e.g. for data that is no longer available), the procedure we follow is to find as many copies of the data as possible from
different researchers (at least 4), and use the most common one. To make this process transparent, when there are
doubts about the data consistency we open an issue and leave it to the community to discuss what to use.

Standardization

Different datasets have different annotations, metadata, etc. We try to respect the idiosyncrasies of each dataset as
much as we can. For this reason, tracks in each Dataset in mirdata have different attributes, e.g. some may have
artist information and some may not. However there are some elements that are common in most datasets, and in
these cases we standardize them to increase the usability of the library. Some examples of this are the annotations in
mirdata, e.g. BeatData.

2.1.2 indexes

Indexes in mirdata are manifests of the files in a dataset and their corresponding md5 checksums. Specifically, an
index is a json file with the mandatory top-level key version and at least one of the optional top-level keys metadata,
tracks, multitracks or records. An index might look like:

Example Index

{ "version": "1.0.0",
"metadata": {

"metadata_file_1": [
// the relative path for metadata_file_1
"path_to_metadata/metadata_file_1.csv",
// metadata_file_1 md5 checksum
"bb8b0ca866fc2423edde01325d6e34£7"

1,

"metadata_file_2": [

// the relative path for metadata_file_2

(continues on next page)

6 Chapter 2. Contributing to mirdata

https://github.com/mir-dataset-loaders/mirdata-notebooks
https://github.com/mir-dataset-loaders/mirdata/issues

mirdata, Release 0.3.8

(continued from previous page)

"path_to_metadata/metadata_file_2.csv",
// metadata_file_2 md5 checksum
"6ccel86ce77a06541cdb9f0a671afb46"
1
}
"tracks": {
"trackl": {
'audio': ["audio_files/trackl.wav", "6c¢77777ce77a06541cdb9f0a671afb46"],
'beats': ["annotations/trackl.beats.csv", "ab8b0®ca866fc2423edde®01325d6e34f7
~"1,
'sections': ["annotations/trackl.sections.txt",
—"05abeca866fc2423edde01325d6e34£7"],
}
"track2": {
'audio': ["audio_files/track2.wav", "6c77777ce77a06542cdb9f0a672afb46"],
'beats': ["annotations/track2.beats.csv", "ab8b0ca866fc2423edde02325d6e34f7
~"1,
'sections': ["annotations/track2.sections.txt",
—"05abeca866fc2423edde02325d6e34£7"],
}

}

The optional top-level keys (tracks, multitracks and records) relate to different organizations of music datasets. tracks
are used when a dataset is organized as a collection of individual tracks, namely mono or multi-channel audio, spectro-
grams only, and their respective annotations. multitracks are used in when a dataset comprises of multitracks - different
groups of tracks which are directly related to each other. Finally, records are used when a dataset consists of groups of
tables (e.g. relational databases), as many recommendation datasets do.

See the contributing docs /. Create an index for more information about mirdata indexes.

2.1.3 annotations

mirdata provides Annotation classes of various kinds which provide a standard interface to different annotation for-
mats. These classes are compatible with the mir_eval library’s expected format, as well as with the jams format. The
format can be easily extended to other formats, if requested.

2.1. Overview 7

mirdata, Release 0.3.8

2.1.4 metadata

When available, we provide extensive and easy-to-access metadata to facilitate track metadata-specific analysis.

metadata is available as attributes at the track level, e.g. track.artist.

2.2 Supported Datasets and Annotations

2.2.1 Dataset Quick Reference

This table is provided as a guide for users to select appropriate datasets. The list of annotations omits some metadata
for brevity, and we document the dataset’s primary annotations only. The number of tracks indicates the number of
unique “tracks” in a dataset, but it may not reflect the actual size or diversity of a dataset, as tracks can vary greatly in

length (from a few seconds to a few minutes), and may be homogeneous.
“Downloadable” possible values:

* : Freely downloadable

e : Available upon request

* : Do-it-yourself download

* : Features only

* : Not available

Find the API documentation for each of the below datasets in Initializing.

Dataset Downloadable? Annotation Types | Tracks License
AcousticBrainz >4M
Genre ¢ audio: * Genre o o) RN
* annotations: ¢ Custom
BAF 3425
e audio: e Matches .
¢ annotations:
Beatles 180
e audio: e Beats
e annotations: e Chords
e Sections
* Key
* Vocal Activity
Beatport EDM key 1486 o)
* audio: * global Key
* annotations:
Billboard (McGill) 890 (@) zere |
¢ audio: e Chords
* annotations: e Sections

continues on next page

8 Chapter 2. Contributing to mirdata

https://creativecommons.org/licenses/by-sa/4.0
https://zenodo.org/record/2554044#.X_ivJ-n7RUI
https://zenodo.org/record/6868083
https://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/publicdomain/zero/1.0/

mirdata, Release 0.3.8

Table 1 - continued from previous page

Dataset Downloadable? Annotation Types | Tracks License
Candombe 35 @—
e audio: e Beats
¢ annotations:
cante100 100 Custom
¢ audio: e FO
e annotations: * Vocal Notes
CIPI 652
* musicXML: o difficulty lev-
e embeddings: els
¢ annotations:
176 EE3) ev-nic-zn |
(CompMusic) e audio: e Beats
Carnatic Rhythm e annotations: * Meter
151 [C) == [N
(CompMusic) e audio: ¢ Beats
Hindustani Rhythm ¢ annotations: * Meter
2150 [(ec) R
(CompMusic) e audio: e Tonic
Indian Tonic * annotations:
82) ev-nc-cn |
(CompMusic) ¢ audio: e Lyrics
Jingju A Cappella e annotations: e Phonemes
e Syllables
1000 [o) ER |
(CompMusic) ¢ audio: e FO
OTMM Makam * annotations: e Tonic
780
(CompMusic) Raga * audio: * FO
e annotations: * Segments
e Tonic
Dagstuhl ChoirSet 108 () S
e multitrack au- e FO
dio: * Beats
* annotations: e Notes
DALI 5358 (Ga) ev-sn |
e audio: e Lyrics
¢ annotations: ¢ Vocal Notes

continues on next page

2.2. Supported Datasets and Annotations

©

https://creativecommons.org/licenses/by-nc-sa/4.0
https://zenodo.org/record/1324183#.X_nq7-n7RUI
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-sa/4.0

mirdata, Release 0.3.8

Table 1 - continued from previous page

Dataset Downloadable? Annotation Types | Tracks License
Da-TACOS (@) ev-sn |
¢ audio: e Lyrics ¢ benchmark
e annotations: ¢ Vocal Notes 15000 tracks
* coveranalysis
10000 tracks
EGFxSet 8970) ev-sn |
e audio: ¢ Notes
* annotations:
Filosax 48
e audio: e FO
* annotations: * Beats
e midi: e Chords
e Tempo
* Notes
Four-Way Tabla 236
Stroke ¢ audio: e Tags
¢ annotations:
Freesound One- 10254
Shot Percussive * audio: * Tags
Sounds e annotations:
Giantsteps key global Key 500
e audio:
¢ annotations:
Giantsteps tempo 664
* audio: * global Genre
* annotations: * global Tempo
Good Sounds 16308) ev-sn |
e audio: : e instrument /n-
* annotations: struments
e sound quality
metadata
* instrument
metadata
Groove MIDI 1150 (D) ev-sn |
e audio: e Beats
* midi: e Tempo
* Drums

continues on next page

10 Chapter 2. Contributing to mirdata

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

mirdata, Release 0.3.8

Table 1 - continued from previous page

Dataset Downloadable? Annotation Types | Tracks License
Gtzan-Genre 1000
* audio: * global Genre
¢ annotations: * Beats
e Tempo
Guitarset 360
e audio: ¢ Beats
e midi: e Chords
* Key
e Tempo
e Notes
e FO
Ikala 252 Custom
e audio: ¢ Vocal FO
* annotations: e Lyrics
Haydn 0p20 2
* audio: N/A * symbolic
e midi: Chords
* scores: * symbolic Key
* annotations:
IDMT-SMT-Audio 55044
Effects ¢ audio: e instrument /n-
* annotations: struments
¢ midi nr Notes
¢ metadata
Effect
IRMAS 9579
e audio: e Instruments
¢ annotations: e Genre
MTG_jamendo_autotagging _moodtheme 18448
e audio: ¢ moodtheme
e annotations: annotations
MAESTRO Piano Notes 1282
e audio:
* annotations:
Medley-solos-DB Instruments 21571 (C) ev-se |

¢ audio:

e annotations:

continues on next page

2.2. Supported Datasets and Annotations

11

https://lbesson.mit-license.org/
http://mac.citi.sinica.edu.tw/ikala/
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-sa/3.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

mirdata, Release 0.3.8

Table 1 - continued from previous page

Dataset Downloadable? Annotation Types | Tracks License
MedleyDB melody Melody F0 108) ==~ |
e audio:
¢ annotations:
MedleyDB pitch 103 C3) ==~ |
¢ audio: e FO
e annotations: o [nstruments
Mridangam Stroke 6977
e audio: e Stroke Name
e annotations: e Tonic
Orchset Melody FO 64
e audio:
* annotations:
PHENICX- 4
Anechoic e multitrack au- * Aligned score
dio: Notes
* annotations: * Original score
Notes
Queen 51
¢ audio: e Chords
* annotations: e Sections
* Key
RWC classical 61 Custom
¢ audio: * Beats
e annotations: e Sections
RWC jazz 50 Custom
¢ audio: e Beats
e annotations: e Sections
RWC popular 100 Custom
¢ audio: e Beats
¢ annotations: e Sections
e Vocal Activity
e Chords
* Tempo
Salami Sections 1359 () EXEN
¢ audio:
e annotations:
continues on next page
12 Chapter 2. Contributing to mirdata

https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://staff.aist.go.jp/m.goto/RWC-MDB/
https://staff.aist.go.jp/m.goto/RWC-MDB/
https://staff.aist.go.jp/m.goto/RWC-MDB/
http://creativecommons.org/publicdomain/zero/1.0/

mirdata, Release 0.3.8

Table 1 - continued from previous page

Dataset Downloadable? Annotation Types | Tracks License
Saraga Carnatic 249 @—
e audio: e FO
¢ annotations: ¢ Vocal FO
e Tempo
e Phrases
* Beats (samas)
e Sections
e Tonic
Saraga Hindustani 108 @—
e audio: e FO
¢ annotations: s Tempo
e Phrases
* Beats (samas)
e Sections
e Tonic
Saraga-Carnatic- 2460
Melody-Synth * audio: * FO
(SCMS) e annotations: e Events
Slakh 1710 (o) G
¢ multitrack au- ¢ Notes Notes
dio: e Instruments
¢ annotations: Instruments
Tinysol 2913
e audio: o [nstruments
* annotations: » Technique
e Notes
Tonality Classi- Global Key 881
calDB e audio:
* annotations:
TONAS 72 Custom
e audio: * FO
* annotations: e Notes
vocadito 40
¢ audio: e FO
* annotations: e Notes
e Lyrics

2.2. Supported Datasets and Annotations

1

w»

https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0
https://www.upf.edu/web/mtg/tonas/
https://creativecommons.org/licenses/by-nc-sa/4.0

mirdata, Release 0.3.8

2.2.2 Annotation Types

The table above provides annotation types as a guide for choosing appropriate datasets, but it is difficult to generically
categorize annotation types, as they depend on varying definitions and their meaning can change depending on the type
of music they correspond to. Here we provide a rough guide to the types in this table, but we strongly recommend
reading the dataset specific documentation to ensure the data is as you expect. To see how these annotation types are
implemented in mirdata see Annotations.

Events
A generic annotation to indicate whether a particular event is happening at a given time. It can be used, for instance,
to indicate whether a particular instrument is playing at a given time-step or whether a particular note is being played

at a given time-step. In fact, it is implicit in annotations such as F0 or Vocal Notes (instrument is activated when the
melody is non-0). However, some datasets provide it as a standalone event annotation.

Beats

Musical beats, typically encoded as sequence of timestamps and corresponding beat positions. This implicitly includes
downbeat information (the beginning of a musical measure).

Chords
Musical chords, e.g. as might be played on a guitar. Typically encoded as a sequence of labeled events, where each

event has a start time, end time, and a label. The label taxonomy varies per dataset, but typically encode a chord’s root
and its quality, e.g. A:m7 for “A minor 7.

Drums
Transcription of the drums, typically encoded as a sequence of labeled events, where the labels indicate which drum

instrument (e.g. cymbal, snare drum) is played. These events often overlap with one another, as multiple drums can be
played at the same time.

FO
Musical pitch contours, typically encoded as time series indicating the musical pitch over time. The time series typ-

ically have evenly spaced timestamps, each with a corresponding pitch value which may be encoded in a number of
formats/granularities, including midi note numbers and Hertz.

Effect

Effect applied to a track. It may refer to the effect applied to a single stroke or an entire track. It can include the effect
name, the effect type, the effect parameters, and the effect settings.

14 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Genre

A typically global “tag”, indicating the genre of a recording. Note that the concept of genre is highly subjective and
we refer those new to this task to this article.

Instruments
Labels indicating which instrument is present in a musical recording. This may refer to recordings of solo instruments,

or to recordings with multiple instruments. The labels may be global to a recording, or they may vary over time,
indicating the presence/absence of a particular instrument as a time series.

Key

Musical key. This can be defined globally for an audio file or as a sequence of events.

Lyrics
Lyrics corresponding to the singing voice of the audio. These may be raw text with no time information, or they

may be time-aligned events. They may have varying levels of granularity (paragraph, line, word, phoneme, character)
depending on the dataset.

Matches
Music identifications in a query audio. This term is used in Audio Fingerprinting to refer to identifications of music

from a reference database. Matches include information about which reference audio has been identified and the start
and end times of the query match.

Meter

Rhythmic meter for each measure. A classical example of meter in Western music would be 4/4. Details how many
subdivisions and the length of this subdivisions that we do have per each measure.

Melody
The musical melody of a song. Melody has no universal definition and is typically defined per dataset. It is typically

encoded as FO or as Notes. Other types of annotations such as Vocal FO or Vocal Notes can often be considered as
melody annotations as well.

Notes

Musical note events, typically encoded as sequences of start time, end time, label. The label typically indicates a
musical pitch, which may be in a number of formats/granularities, including midi note numbers, Hertz, or pitch class.

2.2. Supported Datasets and Annotations 15

https://link.springer.com/article/10.1007/s10844-013-0250-y

mirdata, Release 0.3.8

Phonemes

Sung phonemes of the lead vocal lyrics. Likewise the annotations of lyrics, it can be represented as a stream of char-
acters, or it can be time-aligned by start and end times, and the phoneme comprised in each interval.

Phrases
Musical phrase events, typically encoded by a sequence of timestamps indicating the boundary times and defined by

solfege symbols. This annotations are not intended to describe the complete melody but the musical phrases present
in the track.

Sections
Musical sections, which may be “flat” or “hierarchical”, typically encoded by a sequence of timestamps indicating

musical section boundary times. Section annotations sometimes also include labels for sections, which may indicate
repetitions and/or the section type (e.g. Chorus, Verse).

Segments

Segments of particular musical events, e.g. segments of note stability, segments of particular melodic event, and many
more.

Technique

The playing technique used by a particular instrument, for example “Pizzicato”. This label may be global for a given
recording or encoded as a sequence of labeled events.

Tempo
The tempo of a song, typical in units of beats-per-minute (bpm). This is often indicated globally per track, but in
practice tracks may have tempos that change, and some datasets encode tempo as time-varying quantity. Additionally,

there may be multiple reasonable tempos at any given time (for example, often 2x or 0.5x a tempo value will also be
“correct”). For this reason, some datasets provide two or more different tempo values.

Vocal Activity

A time series or sequence of events indicating when singing voice is present in a recording. This type of annotation is
implicitly available when Vocal FO or Vocal Nofes annotations are available.

Stroke Name

An open “tag” to identify an instrument stroke name or type. Used for instruments that have specific stroke labels.

16 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Syllables
Additional representation of the sung lyrics but structured as syllables instead of complete sentences. It can be annotated

as time-aligned events where the events are the syllables happening at certain time intervals. Otherwise, they can be
represented as a stream of strings, grouped by meaningful syllable structures.

Tags

This is a broad annotation type that is used to label music and sounds, that often spans multiple categories. For example,
music can be labeled with tags pertaining to the instruments present, the musical style, the mood, etc. Tags are often
free-form and may not have a structured taxonomy/set of labels. They are typically represented as a list of strings,
sometimes with associated weights/confidences.

Tonic

The absolute tonic of a track. It may refer to the tonic a single stroke, or the tonal center of a track.

2.3 Tutorial

2.3.1 Installation

To install mirdata:

pip install mirdata

2.3.2 Usage

mirdata is easily imported into your Python code by:

import mirdata

Initializing a dataset

Print a list of all available dataset loaders by calling:

import mirdata
print(mirdata.list_datasets())

To use a loader, (for example, ‘orchset’) you need to initialize it by calling:

import mirdata
orchset = mirdata.initialize('orchset")

Now orchset is a Dataset object containing common methods, described below.

2.3. Tutorial 17

mirdata, Release 0.3.8

Downloading a dataset

All dataset loaders in mirdata have a download () function that allows the user to download the canonical version of
the dataset (when available). When initializing a dataset, by default, mirdata will download/read data to/from a default
location (“~/mir_datasets”). This can be customized by specifying data_home in mirdata.initialize.

Downloading a dataset into the default folder: In this first example, data_home is not specified. Thus, ORCHSET
will be downloaded and retrieved from mir_datasets folder created at user root folder:

import mirdata
orchset = mirdata.initialize('orchset")
orchset.download() # Dataset is downloaded to ~/mir_datasets/orchset

Downloading a dataset into a specified folder: Now data_home is specified and so orchset will be read from / writ-
ten to this custom location:

orchset = mirdata.initialize('orchset', data_home='Users/leslieknope/Desktop/
—orchset123')

orchset.download() # Dataset is downloaded to the folder "orchset123" Leslie Knope
—'s desktop

Partially downloading a dataset

The download() functions allows partial downloads of a dataset. In other words, if applicable, the user can select
which elements of the dataset they want to download. Each dataset has a REMOTES dictionary were all the available
elements are listed.

cantel00 has different elements as seen in the REMOTES dictionary. Thus, we can specify which of these elements are
downloaded, by passing to the download () function the list of keys in REMOTES that we are interested in. This list is
passed to the download() function through the partial_download variable.

Example REMOTES

REMOTES = {
"spectrogram": download_utils.RemoteFileMetadata(
filename="cantel0®0_spectrum.zip",
url="https://zenodo.org/record/1322542/files/cantel®0_spectrum.zip?download=1",
checksum="0b81fe®fd7ab2cladclad789edb12981", # the md5 checksum
destination_dir="cantelQO0_spectrum", # relative path for where to unzip the.
—data, or None
)
"melody": download_utils.RemoteFileMetadata(
filename="cantel®0midi_£f0.zip",
url="https://zenodo.org/record/1322542/files/cantel®®midi_£0.zip?download=1",
checksum="cce543b5125eda5a984347b55fdcd5e8", # the md5 checksum
destination_dir="cantel®0midi_f0", # relative path for where to unzip the data,.
—or None
s
"notes": download_utils.RemoteFileMetadatal(
filename="cantel®0_automaticTranscription.zip",
url="https://zenodo.org/record/1322542/files/cantel®0_automaticTranscription.zip?
—~download=1",
checksum="47fea64c744f9fe678ae5642a8f0ee8e", # the md5 checksum

(continues on next page)

18 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

(continued from previous page)

destination_dir="cantel®0_automaticTranscription", # relative path for where to.
—unzip the data, or None
),
"metadata": download_utils.RemoteFileMetadatal(
filename="cantel®0Meta.xml",
url="https://zenodo.org/record/1322542/files/cantel®0Meta.xml?download=1",
checksum="6ccel186ce77a06541cdb9f0a671afb46", # the md5 checksum

),

"README": download_utils.RemoteFileMetadata(
filename="cantel®0_README.txt",
url="https://zenodo.org/record/1322542/files/cantel®0_README. txt?download=1",
checksum="184209b7e7d816fa603f0c7f481cOaae”, # the md5 checksum

),

A partial download example for cante100 dataset could be:

cantel®0.download(partial_download=['spectrogram', 'melody', 'metadata'])

Validating a dataset

Using the method validate() we can check if the files in the local version are the same than the available canonical
version, and the files were downloaded correctly (none of them are corrupted).

For big datasets: In future mirdata versions, a random validation will be included. This improvement will reduce
validation time for very big datasets.

Accessing annotations

‘We can choose a random track from a dataset with the choice_track() method.

Loading annotations

random_track = orchset.choice_track()

print (random_track)

>>> Track(
alternating_melody=True,
audio_path_mono="user/mir_datasets/orchset/audio/mono/Beethoven-S3-I-exl.wav",
audio_path_stereo="user/mir_datasets/orchset/audio/stereo/Beethoven-S3-I-exl.wav",
composer="Beethoven",
contains_brass=False,
contains_strings=True,
contains_winds=True,
excerpt="1",
melody_path="user/mir_datasets/orchset/GT/Beethoven-S3-I-exl.mel",
only_brass=False,
only_strings=False,
only_winds=False,
predominant_melodic_instruments=['strings', 'winds'],

(continues on next page)

2.3. Tutorial 19

mirdata, Release 0.3.8

(continued from previous page)

track_id="Beethoven-S3-I-ex1",
work="S3-I",

audio_mono: (np.ndarray, float),
audio_stereo: (np.ndarray, float),
melody: F®Data,

We can also access specific tracks by id. The available track ids can be accessed via the .track_ids attribute. In the
next example we take the first track id, and then we retrieve the melody annotation.

orchset_ids = orchset.track_ids # the list of orchset's track ids
orchset_data = orchset.load_tracks() # Load all tracks in the dataset
example_track = orchset_data[orchset_ids[0]] # Get the first track

Accessing the track's melody annotation
example_melody = example_track.melody

Alternatively, we don’t need to load the whole dataset to get a single track.

orchset_ids = orchset.track_ids # the list of orchset's track ids
example_track = orchset.track(orchset_ids[0]) # load this particular track
example_melody = example_track.melody # Get the melody from first track

Accessing data on non-local filesystems

mirdata uses the smart_open library, which supports non-local filesystems such as GCS and AWS. If your data lives,
e.g. on Google Cloud Storage (GCS), simply set the data_home variable accordingly when initializing a dataset. For
example:

Accessing annotations remotely

import mirdata
orchset = mirdata.initialize("orchset", data_home="gs://my-bucket/my-subfolder/orchset")

everything should work the same as if the data were local
orchset.validate()

example_track = orchset.choice_track()
melody = example_track.melody
y, fs = example_track.audio_mono

Note that the data on the remote file system must have identical folder structure to what is specified by dataset.
download(), and we do not support downloading (i.e. writing) to remote filesystems, only reading from them. To
prepare a new dataset to use with mirdata, we recommend running dataset.download() on a local filesystem, and
then manually transfering the folder contents to the remote filesystem.

mp3 data

20 Chapter 2. Contributing to mirdata

https://pypi.org/project/smart-open/

mirdata, Release 0.3.8

For a variety of reasons, mirdata doesn’t support remote reading of mp3 files, so some datasets with mp3 audio may
have tracks unavailable attributes.

Annotation classes

mirdata defines annotation-specific data classes. These data classes are meant to standardize the format for all loaders,
and are compatibly with jams and mir_eval.

The list and descriptions of available annotation classes can be found in Annotations.

Note: These classes may be extended in the case that a loader requires it.

Iterating over datasets and annotations

In general, most datasets are a collection of tracks, and in most cases each track has an audio file along with annotations.

With the 1load_tracks() method, all tracks are loaded as a dictionary with the ids as keys and track objects (which
include their respective audio and annotations, which are lazy-loaded on access) as values.

orchset = mirdata.initialize('orchset")
for key, track in orchset.load_tracks().items():
print(key, track.audio_path)

Alternatively, we can loop over the track_ids list to directly access each track in the dataset.

orchset = mirdata.initialize('orchset")
for track_id in orchset.track_ids:

print(track_id, orchset.track(track_id).audio_path)

Basic example: including mirdata in your pipeline

If we wanted to use orchset to evaluate the performance of a melody extraction algorithm (in our case,
very_bad_melody_extractor), and then split the scores based on the metadata, we could do the following:

mirdata usage example

import mir_eval
import mirdata
import numpy as np
import sox

def very_bad_melody_extractor(audio_path):
duration = sox.file_info.duration(audio_path)
time_stamps = np.arange(®, duration, 0.01)
melody_£f0 = np.random.uniform(low=80.0, high=800.0, size=time_stamps.shape)
return time_stamps, melody_£f0

Evaluate on the full dataset

(continues on next page)

2.3. Tutorial 21

https://jams.readthedocs.io/en/stable/
https://craffel.github.io/mir_eval/

mirdata, Release 0.3.8

(continued from previous page)

orchset = mirdata.initialize("orchset")
orchset_scores = {}
orchset_data = orchset.load_tracks()
for track_id, track_data in orchset_data.items():
est_times, est_freqs = very_bad_melody_extractor(track_data.audio_path_mono)

ref_melody_data = track_data.melody
ref_times = ref _melody_data.times
ref_freqs = ref_melody_data.frequencies

score = mir_eval.melody.evaluate(ref_times, ref_freqs, est_times, est_freqs)
orchset_scores[track_id] = score

Split the results by composer and by instrumentation
composer_scores = {}
strings_no_strings_scores = {True: {}, False: {}}
for track_id, track_data in orchset_data.items():
if track_data.composer not in composer_scores.keys():
composer_scores[track_data.composer] = {}

composer_scores[track_data.composer][track_id] = orchset_scores[track_id]
strings_no_strings_scores[track_data.contains_strings][track_id] = \
orchset_scores[track_id]

This is the result of the example above.

Example result

print(strings_no_strings_scores)
>>> {True: {
'Beethoven-S3-I-exl':0rderedDict ([
('Voicing Recall', 1.0),
('Voicing False Alarm', 1.0),
('Raw Pitch Accuracy', 0.029798422436459245),
('Raw Chroma Accuracy', 0.08063102541630149),
('Overall Accuracy', 0.0272654370489174)
D,
'Beethoven-S3-I-ex2': OrderedDict([
('Voicing Recall', 1.0),
('Voicing False Alarm', 1.0),
('Raw Pitch Accuracy', 0.009221311475409836),
('Raw Chroma Accuracy', 0.07377049180327869),
('Overall Accuracy', 0.008754863813229572)]),

'Wagner-Tannhauser-Act2-ex2': OrderedDict([
('Voicing Recall', 1.0),
('Voicing False Alarm', 1.0),
('Raw Pitch Accuracy', 0.03685636856368564),
('Raw Chroma Accuracy', 0.08997289972899729),
('Overall Accuracy', 0.036657681940700806)])

(continues on next page)

22 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

(continued from previous page)

3}

You can see that very_bad_melody_extractor performs very badly!

Using mirdata with tensorflow

The following is a simple example of a generator that can be used to create a tensorflow Dataset.

mirdata with tf.data.Dataset example

import mirdata
import numpy as np
import tensorflow as tf

def orchset_generator():
using the default data_home
orchset = mirdata.initialize("orchset")
track_ids = orchset.track_ids
for track_id in track_ids:
track = orchset.track(track_id)
audio_signal, sample_rate = track.audio_mono
yield {
"audio": audio_signal.astype(np.float32),
"sample_rate": sample_rate,
"annotation": {
"times": track.melody.times.astype(np.float32),

"freqgs": track.melody.frequencies.astype(np.float32),

1,
"metadata": {"track_id": track.track_id}

}

dataset = tf.data.Dataset.from_generator(
orchset_generator,

{
"audio": tf.float32,
"sample_rate": tf.float32,
"annotation": {"times": tf.float32, "freqs": tf.float32},
"metadata": {'track_id': tf.string}
}

In future mirdata versions, generators for Tensorflow and Pytorch will be included.

2.3. Tutorial

23

mirdata, Release 0.3.8

2.4 Initializing

mirdata.initialize (dataset_name, data_home=None, version="default")
Load a mirdata dataset by name

Example

orchset = mirdata.initialize('orchset') # get the orchset dataset
orchset.download() # download orchset

orchset.validate() # validate orchset

track = orchset.choice_track() # load a random track

print(track) # see what data a track contains

orchset.track_ids() # load all track ids

Parameters
 dataset_name (str) — the dataset’s name see mirdata. DATASETS for a complete list of pos-
sibilities
* data_home (str or None) — path where the data lives. If None uses the default location.

* version (str or None) — which version of the dataset to load. If None, the default version is
loaded.

Returns Dataset — a mirdata.core.Dataset object

mirdata.list_datasets()
Get a list of all mirdata dataset names

Returns list — list of dataset names as strings

2.5 Dataset Loaders

2.5.1 acousticbrainz_genre

Acoustic Brainz Genre dataset

Dataset Info

The AcousticBrainz Genre Dataset consists of four datasets of genre annotations and music features extracted from
audio suited for evaluation of hierarchical multi-label genre classification systems.

Description about the music features can be found here: https://essentia.upf.edu/streaming_extractor_music.html

The datasets are used within the MediaEval AcousticBrainz Genre Task. The task is focused on content-based music
genre recognition using genre annotations from multiple sources and large-scale music features data available in the
AcousticBrainz database. The goal of our task is to explore how the same music pieces can be annotated differently by
different communities following different genre taxonomies, and how this should be addressed by content-based genre
I ecognition systems.

We provide four datasets containing genre and subgenre annotations extracted from four different online metadata
sources:

24 Chapter 2. Contributing to mirdata

https://essentia.upf.edu/streaming_extractor_music.html

mirdata, Release 0.3.8

* AllMusic and Discogs are based on editorial metadata databases maintained by music experts and enthusiasts.
These sources contain explicit genre/subgenre annotations of music releases (albums) following a predefined
genre namespace and taxonomy. We propagated release-level annotations to recordings (tracks) in Acous-
ticBrainz to build the datasets.

e Lastfm and Tagtraum are based on collaborative music tagging platforms with large amounts of genre labels
provided by their users for music recordings (tracks). We have automatically inferred a genre/subgenre taxonomy
and annotations from these labels.

For details on format and contents, please refer to the data webpage.
Note, that the AllMusic ground-truth annotations are distributed separately at https://zenodo.org/record/2554044.

If you use the MediaEval AcousticBrainz Genre dataset or part of it, please cite our ISMIR 2019 overview paper:

Bogdanov, D., Porter A., Schreiber H., Urbano J., & Oramas S. (2019).

The AcousticBrainz Genre Dataset: Multi-Source, Multi-Level, Multi-Label, and Large-
—Scale.

20th International Society for Music Information Retrieval Conference (ISMIR 2019).

This work is partially supported by the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 688382 AudioCommons.

class mirdata.datasets.acousticbrainz_genre.Dataset (data_home=None, version="default")
The acousticbrainz genre dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
* name (str) — the identifier of the dataset

e bibtex (str or None) — dataset citation/s in bibtex format

indexes (dict or None)—

remotes (dict or None) - data to be downloaded

e readme (str) — information about the dataset

* track (function) - a function mapping a track_id to a mirdata.core.Track

e multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns szr — Local path to the dataset

2.5. Dataset Loaders 25

https://zenodo.org/record/2554044

mirdata, Release 0.3.8

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

« allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
e ValueError - if invalid keys are passed to partial_download
* IOError - if a downloaded file’s checksum is different from expected

filter_index(search_key)
Load from AcousticBrainz genre dataset the indexes that match with search_key.

Parameters search_key (str) — regex to match with folds, mbid or genres
Returns dict — {track_id: track data}

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary

26 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_all_train()
Load from AcousticBrainz genre dataset the tracks that are used for training across the four different
datasets.

Returns dict — {track_id: track data}

load_all_validation()
Load from AcousticBrainz genre dataset the tracks that are used for validating across the four different
datasets.

Returns dict — {track_id: track data}

load_allmusic_train()
Load from AcousticBrainz genre dataset the tracks that are used for validation in allmusic dataset.

Returns dict — {track_id: track data}

load_allmusic_validation()
Load from AcousticBrainz genre dataset the tracks that are used for validation in allmusic dataset.

Returns dict — {track_id: track data}

load_discogs_train()
Load from AcousticBrainz genre dataset the tracks that are used for training in discogs dataset.

Returns dict — {track_id: track data}

load_discogs_validation()
Load from AcousticBrainz genre dataset the tracks that are used for validation in tagtraum dataset.

Returns dict — {track_id: track data}

load_extractor (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.acousticbrainz_genre.load_extractor

load_lastfm_train()
Load from AcousticBrainz genre dataset the tracks that are used for training in lastfm dataset.

Returns dict — {track_id: track data}

load_lastfm_validation()
Load from AcousticBrainz genre dataset the tracks that are used for validation in lastfm dataset.

Returns dict — {track_id: track data}

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}

Raises NotImplementedError - If the dataset does not support Multitracks

2.5.

Dataset Loaders 27

mirdata, Release 0.3.8

load_tagtraum_train()

Load from AcousticBrainz genre dataset the tracks that are used for training in tagtraum dataset.

Returns dict — {track_id: track data}

load_tagtraum_validation()

Load from AcousticBrainz genre dataset the tracks that are used for validating in tagtraum dataset.

Returns dict — {track_id: track data}

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns
* list - files in the index but are missing locally

e list - files which have an invalid checksum

class mirdata.datasets.acousticbrainz_genre.Track(track_id, data_home, dataset_name, index,

metadata)
AcousticBrainz Genre Dataset track class

Parameters

e track_id (str) — track id of the track

» data_home (str) — Local path where the dataset is stored. If None, looks for the data in the

default directory, ~/mir_datasets
Variables
e track_id (str) - track id
» genre (1ist)— human-labeled genre and subgenres list
e mbid (str)— musicbrainz id

* mbid_group (str)— musicbrainz id group

artist (1ist) — the track’s artist/s

title (1ist) — the track’s title
e date (1ist) — the track’s release date/s
» filename (str) — the track’s filename

e album (1ist) — the track’s album/s

28

Chapter 2.

Contributing to mirdata

mirdata, Release 0.3.8

e track_number (1ist) — the track number/s

* tonal (dict) - dictionary of acousticbrainz tonal features

* low_level (dict) — dictionary of acousticbrainz low-level features
e rhythm (dict) — dictionary of acousticbrainz rhythm features

Other Parameters acousticbrainz_metadata (dict) — dictionary of metadata provided by Acous-
ticBrainz

property album
metadata album annotation

Returns /ist — album

property artist
metadata artist annotation

Returns /ist — artist

property date
metadata date annotation

Returns /ist — date

property file_name
metadata file_name annotation

Returns str — file name

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

property low_level
low_level track descriptors.

Returns
dict —
* ‘average_loudness’: dynamic range descriptor. It rescales average loudness, computed
on 2sec windows with 1 sec overlap, into the [0,1] interval. The value of O corresponds

to signals with large dynamic range, 1 corresponds to signal with little dynamic range.
Algorithms: Loudness

* ’dynamic_complexity’: dynamic complexity computed on 2sec windows with 1sec overlap.
Algorithms: DynamicComplexity

¢ “silence_rate_20dB’, ‘silence_rate_30dB’, ‘silence_rate_60dB’: rate of silent frames in a
signal for thresholds of 20, 30, and 60 dBs. Algorithms: SilenceRate

* ’spectral_rms’: spectral RMS. Algorithms: RMS
* ’spectral_flux’: spectral flux of a signal computed using L2-norm. Algorithms: Flux

* ’spectral_centroid’, ‘spectral_kurtosis’, ‘spectral_spread’, ‘spectral_skewness’: centroid
and central moments statistics describing the spectral shape. Algorithms: Centroid, Cen-
tralMoments

* ’spectral_rolloff’: the roll-off frequency of a spectrum. Algorithms: RollOff

2.5. Dataset Loaders 29

mirdata, Release 0.3.8

* ’spectral_decrease’: spectral decrease. Algorithms: Decrease

* ’hfc’: high frequency content descriptor as proposed by Masri. Algorithms: HFC
* ’zerocrossingrate’ zero-crossing rate. Algorithms: ZeroCrossingRate

* ’spectral_energy’: spectral energy. Algorithms: Energy

* ’spectral_energyband_low’, ‘spectral_energyband_middle_low’, ‘spec-
tral_energyband_middle_high’,

* ’spectral_energyband_high’: spectral energy in frequency bands [20Hz, 150Hz], [150Hz,
800Hz], [800Hz, 4kHz], and [4kHz, 20kHz]. Algorithms EnergyBand

* ’barkbands’: spectral energy in 27 Bark bands. Algorithms: BarkBands

* “melbands’: spectral energy in 40 mel bands. Algorithms: MFCC

 ’erbbands’: spectral energy in 40 ERB bands. Algorithms: ERBBands

* “mfcc’: the first 13 mel frequency cepstrum coefficients. See algorithm: MFCC
* ’gfcc’: the first 13 gammatone feature cepstrum coefficients. Algorithms: GFCC

* ’barkbands_crest’, ‘barkbands_flatness_db’: crest and flatness computed over energies in
Bark bands. Algorithms: Crest, FlatnessDB

* ’barkbands_kurtosis’, ‘barkbands_skewness’, ‘barkbands_spread’: central moments statis-
tics over energies in Bark bands. Algorithms: CentralMoments

* "melbands_crest’, ‘melbands_flatness_db’: crest and flatness computed over energies in
mel bands. Algorithms: Crest, FlatnessDB

* “melbands_kurtosis’, ‘melbands_skewness’, ‘melbands_spread’: central moments statis-
tics over energies in mel bands. Algorithms: CentralMoments

* ’erbbands_crest’, ‘erbbands_flatness_db’: crest and flatness computed over energies in
ERB bands. Algorithms: Crest, FlatnessDB

* ’erbbands_kurtosis’, ‘erbbands_skewness’, ‘erbbands_spread’: central moments statistics
over energies in ERB bands. Algorithms: CentralMoments

* ’dissonance’: sensory dissonance of a spectrum. Algorithms: Dissonance
* ’spectral_entropy’: Shannon entropy of a spectrum. Algorithms: Entropy
* ’pitch_salience’: pitch salience of a spectrum. Algorithms: PitchSalience
* ’spectral_complexity’: spectral complexity. Algorithms: SpectralComplexity
* ’spectral_contrast_coeffs’, ‘spectral_contrast_valleys’: spectral contrast features. Algo-
rithms: SpectralContrast
property rhythm
rhythm essentia extractor descriptors
Returns
dict —
* ‘beats_position’: time positions [sec] of detected beats using beat tracking algorithm by
Degara et al., 2012. Algorithms: RhythmExtractor2013, BeatTrackerDegara
e ’beats_count’: number of detected beats

* ’bpm’: BPM value according to detected beats

30 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* ’bpm_histogram_first_peak_bpm’, ‘bpm_histogram_first_peak_spread’,
‘bpm_histogram_first_peak_weight’,

* ’bpm_histogram_second_peak_bpm’, ‘bpm_histogram_second_peak_spread’,
‘bpm_histogram_second_peak_weight’: descriptors characterizing highest and sec-
ond highest peak of the BPM histogram. Algorithms: BpmHistogramDescriptors

* ’beats_loudness’, ‘beats_loudness_band_ratio’: spectral energy computed on beats seg-
ments of audio across the whole spectrum, and ratios of energy in 6 frequency bands.
Algorithms: BeatsLoudness, SingleBeatLoudness

* ’onset_rate’: number of detected onsets per second. Algorithms: OnsetRate
* ’danceability’: danceability estimate. Algorithms: Danceability
property title
metadata title annotation
Returns [list — title

to_jams ()
the track’s data in jams format

Returns jams.JAMS — return track data in jam format

property tonal
tonal features

Returns

dict —

* ‘tuning_frequency’: estimated tuning frequency [Hz]. Algorithms: TuningFrequency
* ’tuning_nontempered_energy_ratio’ and ‘tuning_equal_tempered_deviation’

* "hpcp’, ‘thpcp’: 32-dimensional harmonic pitch class profile (HPCP) and its transposed
version. Algorithms: HPCP

* “hpcp_entropy’: Shannon entropy of a HPCP vector. Algorithms: Entropy
* ’key_key’, ‘key_scale’: Global key feature. Algorithms: Key
* ’chords_key’, ‘chords_scale’: Global key extracted from chords detection.

* “chords_strength’, ‘chords_histogram’: : strength of estimated chords and normalized his-
togram of their progression; Algorithms: ChordsDetection, ChordsDescriptors

* ’chords_changes_rate’, ‘chords_number_rate’: chords change rate in the progression; ra-
tio of different chords from the total number of chords in the progression; Algorithms:
ChordsDetection, ChordsDescriptors

property tracknumber
metadata tracknumber annotation
Returns /ist — tracknumber

mirdata.datasets.acousticbrainz_genre.load_extractor (fhandle)
Load a AcousticBrainz Dataset json file with all the features and metadata.

Parameters fhandle (str or file-like) — path or file-like object pointing to a json file
Returns

* np.ndarray - the mono audio signal

2.5. Dataset Loaders 31

mirdata, Release 0.3.8

* float - The sample rate of the audio file

2.5.2 baf

BAF Loader

Dataset Info

BAF dataset is only available upon request. To download the audio request access in this link: https://doi.org/10.5281/
zenodo.6868083. Then unzip the audio into the baf general dataset folder for the rest of annotations and files. Please
include, in the justification field, your academic affiliation (if you have one) and a brief description of your research
topics and why you would like to use this dataset.

Overview

Broadcast Audio Fingerprinting dataset is an open, available upon request, annotated dataset for the task of music
monitoring in broadcast. It contains 2,000 tracks from Epidemic Sound’s private catalogue as reference tracks that
represent 74 hours. As queries, it contains over 57 hours of TV broadcast audio from 23 countries and 203 channels
distributed with 3,425 one-min audio excerpts.

It has been annotated by six annotators in total and each query has been cross-annotated by three of them obtaining
high inter-annotator agreement percentages, which validates the annotation methodology and ensures the reliability of
the annotations.

Purpose of the dataset

This dataset aims to become the standard dataset to evaluate Audio Fingerprinting algorithms since it’s built on real
data, without the use of any data-augmentation techniques. It is also the first dataset to address background music
fingerprinting, which is a real problem in royalties distribution.

Dataset use

This dataset is available for conducting non-commercial research related to audio analysis. It shall not be used for
music generation or music synthesis.

About the data
e Sampling frequency: 8 kHz
* Bit-depth: 16 bit
* Number of channels: 1
* Encoding: pcm_sl16le
* Audio format: .wav

Annotations mark which tracks sound (either in foreground or background) in each query (if any) and also the
specific times where it starts and ends sound in the query. Note that there are 88 queries that doesn’t have any
matches/annotations .

For more information check the dedicated Github repository: https://github.com/guillemcortes/baf-dataset and the
dataset datasheet included in the files.

Ownership of the data

Next, we specify the ownership of all the data included in BAF: Broadcast Audio Fingerprinting dataset. For licensing
information, please refer to the “License” section.

Reference tracks

32 Chapter 2. Contributing to mirdata

https://doi.org/10.5281/zenodo.6868083
https://doi.org/10.5281/zenodo.6868083
https://github.com/guillemcortes/baf-dataset

mirdata, Release 0.3.8

The reference tracks are owned by Epidemic Sound AB, which has given a worldwide, revocable, non-exclusive, royalty-
free licence to use and reproduce this data collection consisting of 2,000 low-quality monophonic 8kHz downsampled
audio recordings.

Query tracks

The query tracks come from publicly available TV broadcast emissions so the ownership of each recording belongs to
the channel that emitted the content. We publish them under the right of quotation provided by the Berne Convention.

Annotations

Guillem Cortes together with Alex Ciurana and Emilio Molina from BMAT Music Licensing S.L. have managed the
annotation therefore the annotations belong to BMAT.

Accessing the dataset

The dataset is available upon request. Please include, in the justification field, your academic affiliation (if you have
one) and a brief description of your research topics and why you would like to use this dataset. Bear in mind that this
information is important for the evaluation of every access request.

License

Given the different ownership of the elements of the dataset, the
dataset is licensed under the following conditions:
* User's access request
* Research only, non-commercial purposes
* No adaptations nor derivative works
* Attribution to Epidemic Sound and the authors as it is indicated
in the ”citation” section.

Acknowledgments

With the support of Ministerio de Ciencia Innovacién y universidades through Retos-Colaboracion call, reference:
RTC2019-007248-7, and also with the support of the Industrial Doctorates Plan of the Secretariat of Universities and
Research of the Department of Business and Knowledge of the Generalitat de Catalunya. Reference: DI46-2020.

class mirdata.datasets.baf.Dataset (data_home=None, version='default")
The BAF dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
e bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None)—
* remotes (dict or None) - data to be downloaded
e readme (str) — information about the dataset
* track (function) - a function mapping a track_id to a mirdata.core.Track
e multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

2.5. Dataset Loaders 33

mirdata, Release 0.3.8

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=Fualse)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
e ValueError - if invalid keys are passed to partial_download
* IOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (list) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

34 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.baf.EventDataExtended (intervals, interval_unit, events, event_unit, tags, tag_unit)
EventDataExtended class. Inherits from annotations.EventData class. An event is defined here as a match query-
reference, and the time interval in the query. This class adds the possibility to attach tags to each event, useful if
there’s a need to differenciate them. In BAF, tags are [single, majority, unanimity].

Variables

* tags (1ist) — list of tag labels (as strings)

2.5. Dataset Loaders 35

mirdata, Release 0.3.8

* tag_unit (str) - tag units, one of TAG_UNITS

* intervals (np.ndarray) — (n x 2) array of intervals

e positive (in the form [start_time, end_time] Times should be)-
e duration (and intervals should have non-negative) -

e interval_unit (str) — unit of the time values in intervals. One

o TIME_UNITS. (of)—

e interval_unit - interval units, one of TIME_UNITS

* events (list) — list of event labels (as strings)

e event_unit (str) — event units, one of EVENT_UNITS

mirdata.datasets.baf.TAG_UNITS = {'open': 'no scrict schema or units'}
Tag units

class mirdata.datasets.baf.Track(track_id, data_home, dataset_name, index, metadata)
BAF track class.

Parameters
e track_id (str) — track id of the track

» data_home (str) — Local path where the dataset is stored. If None, looks for the data in the
default directory, ~/mir_datasets/baf

Variables audio_path (str) — audio path
Properties: audio (Tuple[np.ndarray, float]): audio array country (str): country of emission channel (str): tv

channel of the emission datetime (str): datetime of the TV emission in YYYY-MM-DD HH:mm:ssformat
matches (list): list of matches for a specific query

Returns Track — BAF dataset track
property audio: Tuple[numpy.ndarray, float]
The track’s audio
Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.baf.load_audio(fpath: str) — Tuple[numpy.ndarray, float]
Load a baf audio file.

Parameters fpath (str) — path to audio file

Returns

36 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

np.ndarray - the mono audio signal

float - The sample rate of the audio file

mirdata.datasets.baf.load_matches (track_metadata: dict) —

Optional[mirdata.datasets.baf. EventDataExtended]

Load the matches corresponding to a query track.

Parameters track_metadata (dictr) — track’s metadata

Returns Optional[EventDataExtended] — Track’s annotations in EvendDataExtended format

2.5.3 beatles

Beatles Dataset Loader

Dataset Info

The Beatles Dataset includes beat and metric position, chord, key, and segmentation annotations for 179 Beatles songs.
Details can be found in https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.207.4076&rep=rep1 &type=pdf
and http://isophonics.net/content/reference-annotations-beatles.

class mirdata.datasets.beatles.Dataset (data_home=None, version='default")
The beatles dataset

Variables

data_home (str) — path where mirdata will look for the dataset

version (str) -

name (str) — the identifier of the dataset

bibtex (str or None) - dataset citation/s in bibtex format

indexes (dict or None)—

remotes (dict or None)— data to be downloaded

readme (str) — information about the dataset

track (function) — a function mapping a track_id to a mirdata.core.Track

multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()

Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

2.5. Dataset Loaders 37

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.207.4076&rep=rep1&type=pdf
http://isophonics.net/content/reference-annotations-beatles

mirdata, Release 0.3.8

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

« allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
e ValueError - if invalid keys are passed to partial_download
* IOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

o AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (list) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

38 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

» AttributeError - If this dataset does not have tracks
¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.beatles.load_audio

load_beats (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.beatles.load_beats

load_chords (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.beatles.load_chords

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError — If the dataset does not support Multitracks

load_sections (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.beatles.load_sections

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.beatles.Track(track_id, data_home, dataset_name, index, metadata)
Beatles track class

Parameters

¢ track_id (str) — track id of the track

* data_home (str) — path where the data lives
Variables

* audio_path (str) — track audio path

2.5. Dataset Loaders 39

mirdata, Release 0.3.8

» beats_path (str) — beat annotation path

e chords_path (str) — chord annotation path

keys_path (str) — key annotation path

» sections_path (str) — sections annotation path

title (str) - title of the track
e track_id (str) - track id
Other Parameters
* beats (BeatData) — human-labeled beat annotations
¢ chords (ChordData) — human-labeled chord annotations
* key (KeyData) — local key annotations
* sections (SectionData) — section annotations

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
the track’s data in jams format

Returns jams.JAMS — return track data in jam format

mirdata.datasets.beatles.load_audio(fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a Beatles audio file.

Parameters fhandle (str or file-like) — path or file-like object pointing to an audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.beatles.load_beats (fhandle: TextIO) — mirdata.annotations.BeatData
Load Beatles format beat data from a file

Parameters fhandle (str or file-like) — path or file-like object pointing to a beat annotation file
Returns BeatData — loaded beat data

mirdata.datasets.beatles.load_chords (fhandle: TextIO) — mirdata.annotations.ChordData
Load Beatles format chord data from a file

Parameters fhandle (str or file-like) — path or file-like object pointing to a chord annotation file

Returns ChordData — loaded chord data

40 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

mirdata.datasets.beatles.load_key (fhandle: TextIO) — mirdata.annotations.KeyData
Load Beatles format key data from a file

Parameters fhandle (str or file-like) — path or file-like object pointing to a key annotation file
Returns KeyData — loaded key data

mirdata.datasets.beatles.load_sections (fhandle: TextlO) — mirdata.annotations.SectionData
Load Beatles format section data from a file

Parameters fhandle (str or file-like) — path or file-like object pointing to a section annotation file

Returns SectionData —loaded section data

2.5.4 beatport_key

beatport_key Dataset Loader

Dataset Info

The Beatport EDM Key Dataset includes 1486 two-minute sound excerpts from various EDM subgenres, annotated
with single-key labels, comments and confidence levels generously provided by Eduard Mas Marin, and thoroughly
revised and expanded by Angel Faraldo.

The original audio samples belong to online audio snippets from Beatport, an online music store for DJ’s and Electronic
Dance Music Producers (<http:www.beatport.com>). If this dataset were used in further research, we would appreciate
the citation of the current DOI (10.5281/zenodo.1101082) and the following doctoral dissertation, where a detailed
description of the properties of this dataset can be found:

Angel Faraldo (2017). Tonality Estimation in Electronic Dance Music: A Computational and..
—Musically Informed
Examination. PhD Thesis. Universitat Pompeu Fabra, Barcelona.

This dataset is mainly intended to assess the performance of computational key estimation algorithms in electronic
dance music subgenres.

Data License: Creative Commons Attribution Share Alike 4.0 International

class mirdata.datasets.beatport_key.Dataset (data_home=None, version="'default")
The beatport_key dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
e bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None)—
e remotes (dict or None) - data to be downloaded
e readme (str) — information about the dataset
* track (function) — a function mapping a track_id to a mirdata.core.Track

e multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

2.5. Dataset Loaders 41

http:www.beatport.com

mirdata, Release 0.3.8

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False)
Download the dataset

Parameters

» partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.
Raises
* ValueError - if invalid keys are passed to partial_download
* IOError — if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

o AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

42 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_artist (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.beatport_key.load_artist

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.beatport_key.load_audio

load_genre (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.beatport_key.load_genre

load_key (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.beatport_key.load_key

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError — If the dataset does not support Multitracks

load_tempo (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.beatport_key.load_tempo

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate(verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output

2.5. Dataset Loaders 43

mirdata, Release 0.3.8

Returns
* list - files in the index but are missing locally
e list - files which have an invalid checksum

class mirdata.datasets.beatport_key.Track(track_id, data_home, dataset_name, index, metadata)
beatport_key track class

Parameters
e track_id (str) — track id of the track
» data_home (str) — Local path where the dataset is stored.
Variables
* audio_path (str) — track audio path
* keys_path (str) — key annotation path
» metadata_path (str) — sections annotation path
e title (str) —title of the track
e track_id (str) - track id
Other Parameters
* key (list) — list of annotated musical keys
e artists (/ist) — artists involved in the track
 genre (dict) — genres and subgenres
* tempo (int) — tempo in beats per minute

property audio
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.beatport_key.load_artist(fhandie)
Load beatport_key tempo data from a file

Parameters fhandle (str or file-like) — path or file-like object pointing to metadata file
Returns [list — list of artists involved in the track.

mirdata.datasets.beatport_key.load_audio (fpath)
Load a beatport_key audio file.

Parameters fpath (str) — path to an audio file

44 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Returns
* np.ndarray - the mono audio signal
* float - The sample rate of the audio file

mirdata.datasets.beatport_key.load_genre (fhandle)
Load beatport_key genre data from a file

Parameters fhandle (str or file-like) — path or file-like object pointing to metadata file
Returns dict — with the list with genres [‘genres’] and list with sub-genres [‘sub_genres’]

mirdata.datasets.beatport_key.load_key(fhandle)
Load beatport_key format key data from a file

Parameters fhandle (str or file-like) — path or file-like object pointing to a key annotation file
Returns [list — list of annotated keys

mirdata.datasets.beatport_key.load_tempo (fhandie)
Load beatport_key tempo data from a file

Parameters fhandle (str or file-like) — path or file-like object pointing to metadata file
Returns str — tempo in beats per minute

2.5.5 billboard

McGill Billboard Dataset Loader

Dataset Info

The McGill Billboard dataset includes annotations and audio features corresponding to 890 slots from a random sample
of Billboard chart slots. It also includes metadata like Billboard chart date, peak rank, artist name, etc. Details can be
found at https://ddmal.music.mcgill.ca/research/The_McGill_Billboard_Project_(Chord_Analysis_Dataset)

class mirdata.datasets.billboard.Dataset (data_home=None, version='default")
The McGill Billboard dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
* bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None) -
e remotes (dict or None) — data to be downloaded
e readme (str) — information about the dataset

* track (function) - a function mapping a track_id to a mirdata.core.Track

multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

2.5. Dataset Loaders 45

https://ddmal.music.mcgill.ca/research/The_McGill_Billboard_Project_(Chord_Analysis_Dataset

mirdata, Release 0.3.8

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=Fualse)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
e ValueError - if invalid keys are passed to partial_download
* IOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (list) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

46 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.billboard.load_audio

load_chords (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.billboard.load_chords

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_named_sections (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.billboard.load_named_sections

load_sections (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.billboard.load_sections

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output

Returns

2.5. Dataset Loaders 47

mirdata, Release 0.3.8

* list - files in the index but are missing locally
* list - files which have an invalid checksum

class mirdata.datasets.billboard.Track(track_id, data_home, dataset_name, index, metadata)
McGill Billboard Dataset Track class

Parameters track_id (str) — track id of the track
Variables
» track_id (str) — the index for the sample entry
» audio_path (str) — audio path of the track
 date (chart) - the date of the chart for the entry
e rank (peak) — the desired rank on that chart

» rank - the rank of the song actually annotated, which may be up to 2 ranks higher or lower
than the target rank

* title (str) - the title of the song annotated
* artist (str) — the name of the artist performing the song annotated
» rank — the highest rank the song annotated ever achieved on the Billboard Hot 100

» chart (weeks on) — the number of weeks the song annotated spent on the Billboard Hot
100 chart in total

Other Parameters
¢ chords_full (ChordData) — HTK-style LAB files for the chord annotations (full)
* chords_majmin7 (ChordData) — HTK-style LAB files for the chord annotations (majmin7)
* chords_majmin7inv (ChordData) — HTK-style LAB files for the chord annotations (ma-
jmin7inv)
* chords_majmin (ChordData) — HTK-style LAB files for the chord annotations (majmin)

* chords_majmininv (ChordData) — HTK-style LAB files for the chord annota-
tions(majmininv)

* chroma (np.array) — Array containing the non-negative-least-squares chroma vectors
* tuning (/ist) — List containing the tuning estimates

¢ sections (SectionData) — Letter-annotated section data (A,B,A’)

e named_sections (SectionData) — Name-annotated section data (intro, verse, chorus)
e salami_metadata (dict) — Metadata of the Salami LAB file

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

chroma
Non-negative-least-squares (NNLS) chroma vectors from the Chordino Vamp plug-in

Returns np.ndarray - NNLS chroma vector

48 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

tuning
Tuning estimates from the Chordino Vamp plug-in

Returns list - list of of tuning estimates []

mirdata.datasets.billboard.load_audio(fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a Billboard audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

 np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.billboard.load_chords (fhandie: TextlO)
Load chords from a Salami LAB file.

Parameters fhandle (str or file-like) — path to audio file
Returns ChordData — chord data

mirdata.datasets.billboard.load_named_sections (fpath: str)
Load name-annotated sections from a Salami LAB file.

Parameters fpath (str) — path to sections file
Returns SectionData — section data

mirdata.datasets.billboard.load_sections(fpath: str)
Load letter-annotated sections from a Salami LAB file.

Parameters fpath (str) — path to sections file
Returns SectionData — section data

2.5.6 candombe

Candombe Dataset Loader

Dataset Info

This is a dataset of Candombe recordings with annotated beats and downbeats, totaling over 2 hours of audio. It
comprises 35 complete performances by renowned players, in groups of three to five drums. Recording sessions were
conducted in studio, in the context of musicological research over the past two decades. A total of 26 tambor players
took part, belonging to different generations and representing all the important traditional Candombe styles. The audio
files are stereo with a sampling rate of 44.1 kHz and 16-bit precision. The location of beats and downbeats was annotated
by an expert, adding to more than 4700 downbeats.

The audio is provided as .flac files and the annotations as .csv files. The values in the first column of the csv file are
the time instants of the beats. The numbers on the second column indicate both the bar number and the beat number

2.5. Dataset Loaders 49

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

within the bar. For instance, 1.1, 1.2, 1.3 and 1.4 are the four beats of the first bar. Hence, each label ending with .1
indicates a downbeat. Another set of annotations are provided as .beats files in which the bar numbers are removed.

class mirdata.datasets.candombe.Dataset (data_home=None, version="default")

The candombe dataset
Variables

* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
* bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None) -
e remotes (dict or None) — data to be downloaded
* readme (str) — information about the dataset

* track (function) — a function mapping a track_id to a mirdata.core.Track

multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download

» TOError —if a downloaded file’s checksum is different from expected

50

Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (inf) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}

Raises NotImplementedError - If the dataset does not support Tracks

2.5.

Dataset Loaders 51

mirdata, Release 0.3.8

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate(verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

e list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.candombe.Track(track_id, data_home, dataset_name, index, metadata)
Candombe Track class

Parameters track_id (str) — track id of the track
Variables

* audio_path (str) — path to audio file

* beats_path (str) — path to beats file
Other Parameters beats (BeatData) — beat annotations

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

beats
The track’s beats

Returns BeatData — loaded beat data

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.candombe.load_audio (fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a candombe audio file.

Parameters fhandle (str or file-like) — path or file-like object pointing to an audio file
Returns

* np.ndarray - the audio signal

52 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

* float - The sample rate of the audio file

mirdata.datasets.candombe.load_beats (fhandle: TextIO) — mirdata.annotations.BeatData
Load a candombe beats file.

Parameters fhandle (str or file-like) — path or file-like object pointing to an audio file

Returns BeatData — loaded beat data

2.5.7 cante100

cante100 Loader

Dataset Info

The cante100 dataset contains 100 tracks taken from the COFLA corpus. We defined 10 style families of which 10
tracks each are included. Apart from the style family, we manually annotated the sections of the track in which the vocals
are present. In addition, we provide a number of low-level descriptors and the fundamental frequency corresponding
to the predominant melody for each track. The meta-information includes editoral meta-data and the musicBrainz ID.

Total tracks: 100

cante100 audio is only available upon request. To download the audio request access in this link: https://zenodo.org/
record/1324183. Then unzip the audio into the cante100 general dataset folder for the rest of annotations and files.

Audio specifications:
» Sampling frequency: 44.1 kHz
* Bit-depth: 16 bit
* Audio format: .mp3

cantel100 dataset has spectrogram available, in csv format. spectrogram is available to download without request
needed, so at first instance, cante100 loader uses the spectrogram of the tracks.

The available annotations are:
* FO (predominant melody)
* Automatic transcription of notes (of singing voice)

CANTE100 LICENSE (COPIED FROM ZENODO PAGE)

The provided datasets are offered free of charge for internal non-commercial use.

We do not grant any rights for redistribution or modification. All data collections were..
—.gathered

by the COFLA team.

© COFLA 2015. All rights reserved.

For more details, please visit: http://www.cofla-project.com/?page_id=134

class mirdata.datasets.cantel®0.Dataset (data_home=None, version="default")
The cante100 dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —

e name (str) — the identifier of the dataset

2.5. Dataset Loaders 53

https://zenodo.org/record/1324183
https://zenodo.org/record/1324183
http://www.cofla-project.com/?page_id=134

mirdata, Release 0.3.8

e bibtex (str or None) — dataset citation/s in bibtex format

e indexes (dict or None)—

remotes (dict or None)— data to be downloaded

e readme (str) — information about the dataset

track (function) — a function mapping a track_id to a mirdata.core.Track

multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=Fualse, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
» TOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError — If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

54 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.cante100.load_audio

load_melody (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.cante100.load_melody

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_notes (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.cante100.load_notes

load_spectrogram(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.cante100.load_spectrogram

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

2.5.

Dataset Loaders 55

mirdata, Release 0.3.8

Returns list — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.cantel®0.Track(track_id, data_home, dataset_name, index, metadata)
cante100 track class

Parameters
e track_id (str) — track id of the track

» data_home (str) — Local path where the dataset is stored. If None, looks for the data in the
default directory, ~/mir_datasets/cantel100

Variables

e track_id (str) — track id

» identifier (str)— musicbrainz id of the track

* artist (str) - performing artists

* title (str) - title of the track song

* release (str) — release where the track can be found

e duration (str) — duration in seconds of the track
Other Parameters

* melody (FOData) — annotated melody

* notes (NoteData) — annotated notes

property audio: Tuple[numpy.ndarray, float]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

property spectrogram: Optional[numpy.ndarray]
spectrogram of The track’s audio

Returns np.ndarray — spectrogram

56 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.cantel@0.load_audio(fpath: str) — Tuple[numpy.ndarray, float]
Load a cante100 audio file.

Parameters fpath (str) — path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.cantel®0.load_melody (fhandle: TextIO) — Optional[mirdata.annotations.FOData]
Load cante100 fO annotations

Parameters fhandle (str or file-like) — path or file-like object pointing to melody annotation file
Returns FOData — predominant melody

mirdata.datasets.cantel00.load_notes (fhandle: TextIO) — mirdata.annotations.NoteData
Load note data from the annotation files

Parameters fhandle (str or file-like) — path or file-like object pointing to a notes annotation file
Returns NoteData — note annotations

mirdata.datasets.cantel00.load_spectrogram(fhandle: TextIO) — numpy.ndarray
Load a cante100 dataset spectrogram file.

Parameters fhandle (str or file-like) — path or file-like object pointing to an audio file

Returns np.ndarray — spectrogram

2.5.8 cipi

Can I play it? (CIPI) Dataset Loader

Dataset Info

The “Can I Play It?” (CIPI) dataset is a specialized collection of 652 classical piano scores, provided in a machine-
readable MusicXML format and accompanied by integer-based difficulty levels ranging from 1 to 9, as verified by
expert pianists. Then, it provides embeddings for fingering and expresiveness of the piece. Each recording has multiple
scores corresponding to it. This dataset focuses exclusively on classical piano music, offering a rich resource for music
researchers, educators, and students. Developed by the Music Technology Group in Barcelona, by P. Ramoneda et al.

The CIPI dataset facilitates various applications such as the study of musical complexity, the selection of appropriately
leveled pieces for students, and general research in music education. The dataset, alongside embeddings of multiple
dimensions of difficulty, has been made publicly available to encourage ongoing innovation and collaboration within
the music education and research communities.

The dataset has been published alongside a paper in Expert Systems with Applications Journal.

The dataset is shared under a Creative Commons Attribution Non Commercial Share Alike 4.0 International License,
but need to be requested. Please do request the dataset here: https://zenodo.org/records/8037327. The dataset can only
be used for open research purposes.

class mirdata.datasets.cipi.Dataset (data_home=None, version="default")
The Can I play it? (CIPI) dataset

2.5. Dataset Loaders 57

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://zenodo.org/records/8037327

mirdata, Release 0.3.8

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
e bibtex (str or None)— dataset citation/s in bibtex format
e indexes (dict or None) -
* remotes (dict or None)— data to be downloaded
e readme (str) — information about the dataset
* track (function) - a function mapping a track_id to a mirdata.core.Track
* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
* I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises
e AttributeError — If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits

58 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError — If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

2.5.

Dataset Loaders 59

mirdata, Release 0.3.8

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.cipi.Track(frack_id, data_home, dataset_name, index, metadata)
Can I play it? (CIPI) track class

Parameters track_id (str) — track id of the track
Variables
e title (str) —title of the track
* book (str) — book of the track
e URI (str) — URI of the track
e composer (str)— name of the author of the track
e track_id (str) — track id

e musicxml_paths (1ist) — path to musicxml score. If the music piece contains multiple
movents the list will contain multiple paths.

e difficulty_annotation (int) — annotated difficulty

» fingering_path (tuple) — Path of fingering features from technique dimension computed
with ArGNN fingering model. Return of two paths, the right hand and the ones of the left
hand. Use torch.load(...) for loading the embeddings.

* expressiveness_path (str) — Path of expressiveness features from sound dimension
computed with virtuosoNet model.Use torch.load(...) for loading the embeddings.

* notes_path (str) — Path of note features from notation dimension. Use torch.load(...) for
loading the embeddings.

Other Parameters scores (/ist/music21.stream.Score]) — music21 scores. If the work is splited in
several movements the list will contain multiple scores.

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.cipi.load_score(fhandle: str, data_home: str = 'tests/resources/mir_datasets/cipi’) —
music21.stream.Score
Load cipi score in music21 stream

Parameters

* fhandle (str) — path to MusicXML score

60 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

» data_home (str) — path to cipi dataset

Returns music21.stream.Score — score in music21 format

2.5.9 compmusic_carnatic_rhythm

CompMusic Carnatic Rhythm Dataset Loader

Dataset Info

CompMusic Carnatic Rhythm Dataset is a rhythm annotated test corpus for automatic rhythm analysis tasks in Carnatic
Music. The collection consists of audio excerpts from the CompMusic Carnatic research corpus, manually annotated
time aligned markers indicating the progression through the taala cycle, and the associated taala related metadata. A
brief description of the dataset is provided below. For a brief overview and audio examples of taalas in Carnatic music,
please see: http://compmusic.upf.edu/examples-taala-carnatic

The dataset contains the following data:

AUDIO: The pieces are chosen from the CompMusic Carnatic music collection. The pieces were chosen in four
popular taalas of Carnatic music, which encompasses a majority of Carnatic music. The pieces were chosen include
a mix of vocal and instrumental recordings, new and old recordings, and to span a wide variety of forms. All pieces
have a percussion accompaniment, predominantly Mridangam. The excerpts are full length pieces or a part of the full
length pieces. There are also several different pieces by the same artist (or release group), and multiple instances of
the same composition rendered by different artists. Each piece is uniquely identified using the MBID of the recording.
The pieces are stereo, 160 kbps, mp3 files sampled at 44.1 kHz.

SAMA AND BEATS: The primary annotations are audio synchronized time-stamps indicating the different metrical
positions in the taala cycle. The annotations were created using Sonic Visualizer by tapping to music and manually
correcting the taps. Each annotation has a time-stamp and an associated numeric label that indicates the position of
the beat marker in the taala cycle. The marked positions in the taala cycle are shown with numbers, along with the
corresponding label used. In each case, the sama (the start of the cycle, analogous to the downbeat) are indicated using
the numeral 1.

METADATA: For each excerpt, the taala of the piece, edupu (offset of the start of the piece, relative to the sama,
measured in aksharas) of the composition, and the kalai (the cycle length scaling factor) are recorded. Each excerpt can
be uniquely identified and located with the MBID of the recording, and the relative start and end times of the excerpt
within the whole recording. A separate 5 digit taala based unique ID is also provided for each excerpt as a double check.
The artist, release, the lead instrument, and the raaga of the piece are additional editorial metadata obtained from the
release. A flag indicates if the excerpt is a full piece or only a part of a full piece. There are optional comments on
audio quality and annotation specifics.

Possible uses of the dataset: Possible tasks where the dataset can be used include taala, sama and beat tracking, tempo
estimation and tracking, taala recognition, rhythm based segmentation of musical audio, structural segmentation, audio
to score/lyrics alignment, and rhythmic pattern discovery.

Dataset organization: The dataset consists of audio, annotations, an accompanying spreadsheet providing additional
metadata. For a detailed description of the organization, please see the README in the dataset.

Data Subset: A subset of this dataset consisting of 118 two minute excerpts of music is also available. The content in
the subset is equaivalent and is separately distributed for a quicker testing of algorithms and approaches.

The annotations files of this dataset are shared with the following license: Creative Commons Attribution Non Com-
mercial Share Alike 4.0 International

class mirdata.datasets.compmusic_carnatic_rhythm.Dataset (data_home=None, version='default")
The compmusic_carnatic_rhythm dataset

Variables

2.5. Dataset Loaders 61

http://compmusic.upf.edu/examples-taala-carnatic

mirdata, Release 0.3.8

» data_home (str) — path where mirdata will look for the dataset

e version (str) —

e name (str) — the identifier of the dataset

e bibtex (str or None) — dataset citation/s in bibtex format

e indexes (dict or None)—

e remotes (dict or None)— data to be downloaded

e readme (str) — information about the dataset

* track (function) — a function mapping a track_id to a mirdata.core.Track

e multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns szr — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=Fualse, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
* ValueError - if invalid keys are passed to partial_download
e TOError — if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises
e AttributeError — If this dataset does not have multitracks
¢ NotImplementedError — If this dataset does not have predetermined splits

Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

62 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (list) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

» AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

2.5.

Dataset Loaders 63

mirdata, Release 0.3.8

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.compmusic_carnatic_rhythm.Track(track_id, data_home, dataset_name, index,
metadata)
CompMusic Carnatic Music Rhythm class

Parameters
e track_id (str) — track id of the track

» data_home (str) — Local path where the dataset is stored. default=None If None, looks for
the data in the default directory, ~/mir_datasets

Variables
* audio_path (str) — path to audio file
* beats_path (srt) — path to beats file
* meter_path (srt) — path to meter file
Other Parameters
e beats (BeatData) — beats annotation
* meter (string) — meter annotation
* mbid (string) — MusicBrainz ID
* name (string) — name of the recording in the dataset
* artist (string) — artists name
* release (string) — release name
* lead_instrument_code (string) — code for the load instrument
* taala (string) — taala annotation
* raaga (string) — raaga annotation
e num_of_beats (int) — number of beats in annotation
* num_of_samas (int) — number of samas in annotation

property audio
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type

Returns str or None — joined path string or None

64 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.compmusic_carnatic_rhythm.load_audio(audio_path)
Load an audio file.

Parameters audio_path (szr) — path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.compmusic_carnatic_rhythm.load_beats (fhandle)
Load beats

Parameters fhandle (str or file-like) — Local path where the beats annotation is stored.
Returns BeatData — beat annotations

mirdata.datasets.compmusic_carnatic_rhythm.load_meter (fhandle)
Load meter

Parameters fhandle (str or file-like) — Local path where the meter annotation is stored.
Returns float — meter annotation

2.5.10 compmusic_hindustani_rhythm

CompMusic Hindustani Rhythm Dataset Loader

Dataset Info

CompMusic Hindustani Rhythm Dataset is a rhythm annotated test corpus for automatic rhythm analysis tasks in Hin-
dustani Music. The collection consists of audio excerpts from the CompMusic Hindustani research corpus, manually
annotated time aligned markers indicating the progression through the taal cycle, and the associated taal related meta-
data. A brief description of the dataset is provided below.

For a brief overview and audio examples of taals in Hindustani music, please see: http://compmusic.upf.edu/
examples-taal-hindustani

The dataset contains the following data:

AUDIO: The pieces are chosen from the CompMusic Hindustani music collection. The pieces were chosen in four
popular taals of Hindustani music, which encompasses a majority of Hindustani khyal music. The pieces were chosen
include a mix of vocal and instrumental recordings, new and old recordings, and to span three lays. For each taal,
there are pieces in dhrut (fast), madhya (medium) and vilambit (slow) lays (tempo class). All pieces have Tabla as the
percussion accompaniment. The excerpts are two minutes long. Each piece is uniquely identified using the MBID of
the recording. The pieces are stereo, 160 kbps, mp3 files sampled at 44.1 kHz. The audio is also available as wav files
for experiments.

SAM, VIBHAAG AND THE MAATRAS: The primary annotations are audio synchronized time-stamps indicating
the different metrical positions in the taal cycle. The sam and matras of the cycle are annotated. The annotations were
created using Sonic Visualizer by tapping to music and manually correcting the taps. Each annotation has a time-stamp
and an associated numeric label that indicates the position of the beat marker in the taala cycle. The annotations and
the associated metadata have been verified for correctness and completeness by a professional Hindustani musician
and musicologist. The long thick lines show vibhaag boundaries. The numerals indicate the matra number in cycle. In
each case, the sam (the start of the cycle, analogous to the downbeat) are indicated using the numeral 1.

2.5. Dataset Loaders 65

http://compmusic.upf.edu/examples-taal-hindustani
http://compmusic.upf.edu/examples-taal-hindustani

mirdata, Release 0.3.8

METADATA: For each excerpt, the taal and the lay of the piece are recorded. Each excerpt can be uniquely identified
and located with the MBID of the recording, and the relative start and end times of the excerpt within the whole
recording. A separate 5 digit taal based unique ID is also provided for each excerpt as a double check. The artist,
release, the lead instrument, and the raag of the piece are additional editorial metadata obtained from the release.
There are optional comments on audio quality and annotation specifics.

The dataset consists of excerpts with a wide tempo range from 10 MPM (matras per minute) to 370 MPM. To study
any effects of the tempo class, the full dataset (HMDf) is also divided into two other subsets - the long cycle subset
(HMD]I) consisting of vilambit (slow) pieces with a median tempo between 10-60 MPM, and the short cycle subset
(HMDs) with madhyalay (medium, 60-150 MPM) and the drut lay (fast, 150+ MPM).

Possible uses of the dataset: Possible tasks where the dataset can be used include taal, sama and beat tracking, tempo
estimation and tracking, taal recognition, rhythm based segmentation of musical audio, audio to score/lyrics alignment,
and rhythmic pattern discovery.

Dataset organization: The dataset consists of audio, annotations, an accompanying spreadsheet providing additional
metadata, a MAT-file that has identical information as the spreadsheet, and a dataset description document.

The annotations files of this dataset are shared with the following license: Creative Commons Attribution Non Com-
mercial Share Alike 4.0 International

class mirdata.datasets.compmusic_hindustani_rhythm.Dataset (data_home=None, version="default")
The compmusic_hindustani_rhythm dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset

* bibtex (str or None) — dataset citation/s in bibtex format

indexes (dict or None)—

remotes (dict or None) - data to be downloaded

e readme (str) — information about the dataset

* track (function) - a function mapping a track_id to a mirdata.core.Track

* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite(Q)
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

66 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

« allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
* IOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises
e AttributeError — If this dataset does not have tracks

* NotImplementedError — If this dataset does not have predetermined splits

. Dataset Loaders 67

mirdata, Release 0.3.8

Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError — If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.compmusic_hindustani_rhythm.Track(track_id, data_home, dataset_name,
index, metadata)
CompMusic Hindustani Music Rhythm class

Parameters
e track_id (str) — track id of the track

» data_home (str) — Local path where the dataset is stored. default=None If None, looks for
the data in the default directory, ~/mir_datasets

Variables
* audio_path (str) — path to audio file
* beats_path (srt) — path to beats file
* meter_path (srt) — path to meter file
Other Parameters
* beats (BeatData) — beats annotation
* meter (string) — meter annotation
* mbid (string) — MusicBrainz ID

* name (string) — name of the recording in the dataset

68 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* artist (string) — artists name

* release (string) — release name

* lead_instrument_code (string) — code for the load instrument
* taala (string) — taala annotation

* raaga (string) — raaga annotation

* laya (string) — laya annotation

e num_of_beats (int) — number of beats in annotation

e num_of_samas (int) — number of samas in annotation

* median_matra_period (float) — median matra per period

* median_matras_per_min (float) — median matras per minute
e median_ISI (float) — median ISI

* median_avarts_per_min (float) — median avarts per minute

property audio
The track’s audio

Returns
 np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.compmusic_hindustani_rhythm.load_audio (audio_path)
Load an audio file.

Parameters audio_path (str) — path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.compmusic_hindustani_rhythm.load_beats (fhandle)
Load beats

Parameters fhandle (str or file-like) — Local path where the beats annotation is stored.
Returns BeatData — beat annotations

mirdata.datasets.compmusic_hindustani_rhythm.load_meter (fhandle)
Load meter

Parameters fhandle (str or file-like) — Local path where the meter annotation is stored.

Returns float — meter annotation

2.5. Dataset Loaders 69

mirdata, Release 0.3.8

2.5.11 compmusic_indian_tonic

Indian Art Music Tonic Loader

Dataset Info
This loader includes a combination of six different datasets for the task of Indian Art Music tonic identification.

These datasets comprise audio excerpts and manually done annotations of the tonic pitch of the lead artist for each
audio excerpt. Each excerpt is accompanied by its associated editorial metadata. These datasets can be used to develop
and evaluate computational approaches for automatic tonic identification in Indian art music. These datasets have been
used in several articles mentioned below. A majority of These datasets come from the CompMusic corpora of Indian
art music, for which each recording is associated with a MBID. Through the MBID other information can be obtained
using the Dunya API.

These six datasets are used for for the task of tonic identification for Indian Art Music, and can be used for a comparative
evaluation. To the best of our knowledge these are the largest datasets available for tonic identification for Indian art
music. These datases vary in terms of the audio quality, recording period (decade), the number of recordings for
Carnatic, Hindustani, male and female singers and instrumental and vocal excerpts.

All the datasets (annotations) are version controlled. The audio files corresponding to these datsets are made available
on request for only research purposes. See DOWNLOAD_INFO of this loader.

The tonic annotations are availabe both in tsv and json format. The loader uses the JSON formatted annotations.

'ID": {
"artist': <name of the lead artist if available>,
"filepath': <relative path to the audio file>,
'gender': <gender of the lead singer if available>,
'mbid': <musicbrainz id when available>,
"tonic': <tonic in Hz>,
"tradition': <Hindustani or Carnatic>,
"type': <vocal or instrumental>

where keys of the main dictionary are the filepaths to the audio files (feature path is exactly the same with a different
extension of the file name).

Despite not being loaded in this dataloader, the dataset includes features, which may be integrated to the loader in future
releases. However these features may be easily computed following the instructions in the related paper. See BIBTEX.

There are a total of 2161 audio excerpts, and while the CM collection includes aproximately 50% Carnatic and 50%
Hindustani recordings, II'TM and IISc collections are 100% Carnatic music. The excerpts vary a lot in duration. See
[this webpage](https://compmusic.upf.edu/iam-tonic-dataset) for a detailed overview of the datasets.

If you have any questions or comments about the dataset, please feel free to email: [sankalp (dot) gulati (at) gmail (dot)
com], or [sankalp (dot) gulati (at) upf (dot) edu].

class mirdata.datasets.compmusic_indian_tonic.Dataset (data_home=None, version="default")
The compmusic_indian_tonic dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset

* bibtex (str or None) — dataset citation/s in bibtex format

70 Chapter 2. Contributing to mirdata

https://compmusic.upf.edu/iam-tonic-dataset

mirdata, Release 0.3.8

e indexes (dict or None)—

remotes (dict or None) - data to be downloaded

e readme (str) — information about the dataset

» track (function) — a function mapping a track_id to a mirdata.core.Track

e multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
* ValueError - if invalid keys are passed to partial_download
e TOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

2.5.

Dataset Loaders 71

mirdata, Release 0.3.8

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

72 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

e list - files which have an invalid checksum

class mirdata.datasets.compmusic_indian_tonic.Track(track_id, data_home, dataset_name, index,
metadata)
CompMusic Tonic Dataset track class

Parameters

e track_id (str) — track id of the track

* data_home (str) — Local path where the dataset is stored.
Variables

e track_id (str) — track id

* audio_path (str) — audio path
Other Parameters

* tonic (float) — tonic annotation

* artist (str) — performing artist

 gender (str) — gender of the recording artists

* mbid (str) — MusicBrainz ID of the piece (if available)

* type (str) — type of piece (vocal, instrumental, etc.)

* tradition (str) — tradition of the piece (Carnatic or Hindustani)

property audio
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.compmusic_indian_tonic.load_audio (audio_path)
Load a Indian Art Music Tonic audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns
 np.ndarray - the mono audio signal

* float - The sample rate of the audio file

2.5. Dataset Loaders 73

mirdata, Release 0.3.8

2.5.12 compmusic_jingju_acappella

Jingju A Cappella Singing Dataset Loader

Dataset Info

Description: This dataset is a collection of boundary annotations of a cappella singing performed by Beijing Opera
(Jingju,) professional and amateur singers.

Contents:
1. wav.zip: audio files in .wav format, mono or stereo.
2. pycode.zip: util code for parsing the .textgrid annotation
3. catalogue®.csv: recording metadata, source separation recordings are not included.
4. annotation_txt.zip: phrase, syllable and phoneme time boundaries (second) and labels in .txt format
The annotation_txt.zip folder annotations are represented as follows:
1. phrase_char: phrase-level time boundaries, labeled in Mandarin characters
2. phrase: phrase-level time boundaries, labeled in Mandarin pinyin
3. syllable: syllable-level time boundaries, labeled in Mandarin pinyin
4. phoneme: phoneme-level time boundaries, labeled in X-SAMPA
The boundaries (onset and offset) have been annotated hierarchically:
1. phrase (line)
2. syllable
3. phoneme

Annotation details: Singing units in pinyin and X-SAMPA have been annotated to a jingju a cappella singing audio
dataset.

Audio details: The corresponding audio files are the a cappella singing arias recordings, which are stereo or mono,
sampled at 44.1 kHz, and stored as .wav files. The .wav files are recorded by two institutes: those file names
ending with ‘qm’ are recorded by C4DM, Queen Mary University of London; others file names ending with
‘upf” or ‘lon’ are recorded by MTG-UPF. Additionally, another collection of 15 clean singing recordings is
included in this dataset. They are extracted from the commercial recordings which originally contains karaoke
accompaniment and mixed versions.

Additional details: Annotation format, units, parsing code and other information please refer to: https://github.com/
MTG/jingjuPhonemeAnnotation

License information: Textgrid annotations are licensed under Creative Commons Attribution-NonCommercial 4.0
International License. Wav audio ending with ‘upf’ or ‘lon’ is licensed under Creative Commons Attribution-
NonCommercial 4.0 International. For the license of .wav audio ending with ‘gm’ from C4DM Queen Mary
University of London, please refer to this page http://isophonics.org/SingingVoiceDataset

class mirdata.datasets.compmusic_jingju_acappella.Dataset (data_home=None, version="default")
The compmusic_jingju_acappella dataset

Variables
* data_home (str) — path where mirdata will look for the dataset

e version (str) —

74 Chapter 2. Contributing to mirdata

https://github.com/MTG/jingjuPhonemeAnnotation
https://github.com/MTG/jingjuPhonemeAnnotation
http://isophonics.org/SingingVoiceDataset

mirdata, Release 0.3.8

e name (str) — the identifier of the dataset
* bibtex (str or None) — dataset citation/s in bibtex format

e indexes (dict or None)—

remotes (dict or None) - data to be downloaded

* readme (str) — information about the dataset

* track (function) — a function mapping a track_id to a mirdata.core.Track

* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

« allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
e I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

2.5.

Dataset Loaders 75

mirdata, Release 0.3.8

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_phonemes (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.jingju_acapella.load_phonemes

load_phrases (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.jingju_acapella.load_phrases

load_syllable(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.jingju_acapella.load_syllable

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

76 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Returns list — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.compmusic_jingju_acappella.Track(track_id, data_home, dataset_name, index,
metadata)
Jingju A Cappella Singing Track class

Parameters
e track_id (str) — track id of the track

» data_home (str) — Local path where the dataset is stored. default=None If None, looks for
the data in the default directory, ~/mir_datasets

Variables
* audio_path (str) — local path where the audio is stored
» phoneme_path (str) — local path where the phoneme annotation is stored
» phrase_char_path (str)—local path where the lyric phrase annotation in chinese is stored

» phrase_path (str) — local path where the lyric phrase annotation in western characters is
stored

» syllable_path (str) — local path where the syllable annotation is stored

» work (str) — string referring to the work where the track belongs

» details (float) — string referring to additional details about the track
Other Parameters

* phoneme (EventData) — phoneme annotation

* phrase_char (LyricsData) — lyric phrase annotation in chinese

 phrase (LyricsData) — lyric phrase annotation in western characters

» syllable (EventData) — syllable annotation

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
¢ float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type

2.5. Dataset Loaders 77

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.compmusic_jingju_acappella.load_audio (fhandle: BinarylO) —
Tuple[numpy.ndarray, float]
Load Jingju A Cappella Singing audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.compmusic_jingju_acappella.load_phonemes (fhandle: TextIO) —
mirdata.annotations.LyricData
Load phonemes

Parameters fhandle (str or file-like) — path or file-like object pointing to a phoneme annotation file
Returns LyricData — phoneme annotation

mirdata.datasets.compmusic_jingju_acappella.load_phrases(fhandie: TextlO) —
mirdata.annotations.LyricData
Load lyric phrases annotation

Parameters fhandle (str or file-like) — path or file-like object pointing to a lyric annotation file
Returns LyricData — lyric phrase annotation

mirdata.datasets.compmusic_jingju_acappella.load_syllable(fhandie: TextlO) —
mirdata.annotations.LyricData
Load syllable

Parameters fhandle (str or file-like) — path or file-like object pointing to a syllable annotation file

Returns LyricData — syllable annotation

2.5.13 compmusic_otmm_makam

OTMM Makam Recognition Dataset Loader

Dataset Info

NOTE: From mirdata v0.3.8 on, the only version available of this dataset is difm2016-fix1, which is basically the
same as dIfm2016, but with a few fixes in some annotations. The original dIfm2016 version is still available in mirdata
versions <=0.3.7. Note that from dlfm2016 to dIfm2016-fix1, no new recordings or annotation were added, only a few
annotation files were fixed.

This dataset is designed to test makam recognition methodologies on Ottoman-Turkish makam music. It is composed
of 50 recording from each of the 20 most common makams in CompMusic Project’s Dunya Ottoman-Turkish Makam
Music collection. Currently the dataset is the largest makam recognition dataset.

The recordings are selected from commercial recordings carefully such that they cover diverse musical forms, vo-
cal/instrumentation settings and recording qualities (e.g. historical recordings vs. contemporary recordings). Each
recording in the dataset is identified by an 16-character long unique identifier called MBID, hosted in MusicBrainz.
The makam and the tonic of each recording is annotated in the file annotations.json.

78 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

The audio related data in the test dataset is organized by each makam in the folder data. Due to copyright reasons, we
are unable to distribute the audio. Instead we provide the predominant melody of each recording, computed by a state-
of-the-art predominant melody extraction algorithm optimized for OTMM culture. These features are saved as text files
(with the paths data/[makam]/[mbid].pitch) of single column that contains the frequency values. The timestamps are
removed to reduce the filesizes. The step size of the pitch track is 0.0029 seconds (an analysis window of 128 sample
hop size of an mp3 with 44100 Hz sample rate), with which one can recompute the timestamps of samples.

Moreover the metadata of each recording is available in the repository, crawled from MusicBrainz using an open source
tool developed by us. The metadata files are saved as data/[makam]/[mbid].json.

For reproducability purposes we note the version of all tools we have used to generate this dataset in the file algo-
rithms.json (not integrated in the loader but present in the donwloaded dataset).

A complementary toolbox for this dataset is MORTY, which is a mode recogition and tonic identification toolbox. It
can be used and optimized for any modal music culture. Further details are explained in the publication above.

class mirdata.datasets.compmusic_otmm_makam.Dataset (data_home=None, version='default")
The compmusic_otmm_makam dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
* name (str) — the identifier of the dataset

* bibtex (str or None) — dataset citation/s in bibtex format

indexes (dict or None)—

remotes (dict or None) - data to be downloaded

e readme (str) — information about the dataset

* track (function) — a function mapping a track_id to a mirdata.core.Track

* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (list or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

2.5. Dataset Loaders 79

mirdata, Release 0.3.8

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
e I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

80 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

load_mb_tags (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.compmusic_otmm_makam.load_mb_tags

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_pitch(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.compmusic_otmm_makam.load_pitch

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate(verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

e list - files in the index but are missing locally

¢ list - files which have an invalid checksum

class mirdata.datasets.compmusic_otmm_makam.Track(track_id, data_home, dataset_name, index,
metadata)
OTMM Makam Track class

Parameters
e track_id (str) — track id of the track

» data_home (str) — Local path where the dataset is stored. default=None If None, looks for
the data in the default directory, ~/mir_datasets

Variables
» pitch_path (str) — local path where the pitch annotation is stored
* mb_tags_path (str) — local path where the MusicBrainz tags annotation is stored
» makam (str) — string referring to the makam represented in the track
e tonic (float) — tonic annotation
e mbid (str)— MusicBrainz ID of the track
Other Parameters

e pitch (FOData) — pitch annotation

2.5. Dataset Loaders 81

mirdata, Release 0.3.8

* mb_tags (dict) — dictionary containing the raw editorial track metadata from MusicBrainz

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.compmusic_otmm_makam.load_mb_tags (fhandle: TextIO) — dict
Load track metadata

Parameters fhandle (str or file-like) — path or file-like object pointing to musicbrainz metadata file
Returns Dict — metadata of the track

mirdata.datasets.compmusic_otmm_makam.load_pitch(fhandle: TextIO) — mirdata.annotations.FOData
Load pitch

Parameters fhandle (str or file-like) — path or file-like object pointing to a pitch annotation file

Returns FOData — pitch annotation

2.5.14 compmusic_raga

CompMusic Raga Dataset Loader

Dataset Info

Raga datasets from CompMusicomprise two sizable datasets, one for each music tradition, Carnatic and Hindustani.
These datasets comprise full length audio recordings and their associated raga labels. These two datasets can be used
to develop and evaluate approaches for performing automatic raga recognition in Indian art music.

These datasets are derived from the CompMusic corpora of Indian Art Music. Therefore, the dataset has been compiled
at the Music Technology Group, by a group of researchers working on the computational analysis of Carnatic and
Hindustani music within the framework of the ERC-funded CompMusic project.

Each recording is associated with a MBID. With the MBID other information can be obtained using the Dunya API or
pycompmusic.

The Carnatic subset comprises 124 hours of audio recordings and editorial metadata that includes carefully curated
and verified raga labels. It contains 480 recordings belonging to 40 ragas with 12 recordings per raga.

The Hindustani subset comprises 116 hours of audio recordings and editorial metadata that includes carefully curated
and verified raga labels. It contains 300 recordings belonging to 30 ragas with 10 recordings per raga.

The dataset also includes features per each file: * Tonic: float indicating the recording tonic * Tonic fine tuned: float
indicating the manually fine-tuned recording tonic * Predominant pitch: automatically-extracted predominant pitch
time-series (timestamps and freq. values) * Post-processed pitch: automatically-extracted and post-processed pre-
dominant pitch time-series * Nyas segments: KNN-extracted segments of Nyas (start and end times provided) * Tani
segments: KNN-extracted segments of Tanis (start and end times provided)

The dataset includes both txt files and json files that contain information about each audio recording in terms of its
mbid, the path of the audio/feature files and the associated raga identifier. Each raga is assigned a unique identifier by
Dunya, which is similar to the mbid in terms of purpose. A mapping of the raga id to its transliterated name is also
provided.

82 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

For more information about the dataset please refer to: https://compmusic.upf.edu/node/328

class mirdata.datasets.compmusic_raga.Dataset (data_home=None, version="default")
The compmusic_raga dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset

e bibtex (str or None)— dataset citation/s in bibtex format

indexes (dict or None)-—

remotes (dict or None)— data to be downloaded

e readme (str) — information about the dataset

* track (function) - a function mapping a track_id to a mirdata.core.Track

» multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
» TOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

2.5. Dataset Loaders 83

https://compmusic.upf.edu/node/328

mirdata, Release 0.3.8

Raises

» AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (list) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError — If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

84 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Returns list — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.compmusic_raga.Track(track_id, data_home, dataset_name, index, metadata)
CompMusic Raga Dataset class

Parameters
e track_id (str) — track id of the track

» data_home (str) — Local path where the dataset is stored. default=None If None, looks for
the data in the default directory, ~/mir_datasets

Variables

* audio_path (str) — path to audio file

* tonic_path (str) — path to tonic annotation

* tonic_fine_tuned_path (str) — path to tonic fine-tuned annotation

* pitch_path (str) — path to pitch annotation

» pitch_post_processed_path (str) — path to processed pitch annotation

* nyas_segments_path (str) — path to nyas segments annotation

* tani_segments_path (str) — path to tani segments annotation
Other Parameters

* tonic (float) — tonic annotation

* tonic_fine_tuned (float) — tonic fine-tuned annotation

* pitch (FOData) — pitch annotation

* pitch_post_processed (FOData) — processed pitch annotation

* nyas_segments (EventData) — nyas segments annotation

* tani_segments (EventData) — tani segments annotation

* recording (str) — name of the recording

* concert (str) — name of the concert

e artist (str) — name of the artist

* mbid (str) — mbid of the recording

* raga (str) —raga in the recording

* ragaid (str) — id of the raga in the recording

2.5. Dataset Loaders 85

mirdata, Release 0.3.8

e tradition (str) — tradition name (carnatic or hindustani)

property audio
The track’s audio

Returns
* np.ndarray - audio signal
¢ float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.compmusic_raga.load_audio (audio_path)
Load an audio file.

Parameters audio_path (str) — path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.compmusic_raga.load_nyas_segments (fhandie)
Load nyas segments

Parameters fhandle (str or file-like) — Local path where the nyas segments annotation is stored.
Returns EventData — segment annotation

mirdata.datasets.compmusic_raga.load_pitch(fhandle)
Load pitch

Parameters fhandle (str or file-like) — Local path where the pitch annotation is stored.
Returns FOData — pitch annotation

mirdata.datasets.compmusic_raga.load_tani_segments (fhandie)
Load tani segments

Parameters fhandle (str or file-like) — Local path where the tani segments annotation is stored.
Returns EventData — segment annotation

mirdata.datasets.compmusic_raga.load_tonic(fhandle)
Load track absolute tonic

Parameters fhandle (str or file-like) — Local path where the tonic path is stored.

Returns int — Tonic annotation in Hz

86 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

2.5.15 dagstuhl_choirset

Dagstuhl ChoirSet Dataset Loader

Dataset Info

Dagstuhl ChoirSet (DCS) is a multitrack dataset of a cappella choral music. The dataset includes recordings of an
amateur vocal ensemble performing two choir pieces in full choir and quartet settings (total duration 55min 30sec).
The audio data was recorded during an MIR seminar at Schloss Dagstuhl using different close-up microphones to
capture the individual singers’ voices:

* Larynx microphone (LRX): contact microphone attached to the singer’s throat.
* Dynamic microphone (DYN): handheld dynamic microphone.
* Headset microphone (HSM): microphone close to the singer’s mouth.

LRX, DYN and HSM recordings are provided on the Track level. All tracks in the dataset have a LRX recording, while
only a subset has DYN and HSM recordings.

In addition to the close-up microphone tracks, the dataset also provides the following recordings:
* Room microphone mixdown (STM): mixdown of the stereo room microphone.
* Room microphone left (STL): left channel of the stereo microphone.
* Room microphone right (STR): right channel of the stereo microphone.

* Room microphone mixdown with reverb (StereoReverb_STM): STM signal with artificial reverb.

Piano left (SPL): left channel of the piano accompaniment.
* Piano right (SPR): right channel of the piano accompaniment.

All room microphone and piano recordings are provided on the Multitrack level. All multitracks have room microphone
signals, while only a subset has piano recordings.

For more details, we refer to: Sebastian Rosenzweig (1), Helena Cuesta (2), Christof Weil} (1), Frank Scherbaum (3),
Emilia Gémez (2,4), and Meinard Miiller (1): Dagstuhl ChoirSet: A Multitrack Dataset for MIR Research on Choral
Singing. Transactions of the International Society for Music Information Retrieval, 3(1), pp. 98-110, 2020. DOI:
https://doi.org/10.5334/tismir.48

(1) International Audio Laboratories Erlangen, DE
(2) Music Technology Group, Universitat Pompeu Fabra, Barcelona, ES
(3) University of Potsdam, DE

(4) Joint Research Centre, European Commission, Seville, ES

class mirdata.datasets.dagstuhl_choirset.Dataset (data_home=None, version="default")
The Dagstuhl ChoirSet dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
e bibtex (str or None)— dataset citation/s in bibtex format

e indexes (dict or None)—

2.5. Dataset Loaders 87

https://doi.org/10.5334/tismir.48

mirdata, Release 0.3.8

e remotes (dict or None) - data to be downloaded

e readme (str) — information about the dataset

track (function) — a function mapping a track_id to a mirdata.core.Track

multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (list or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
e I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

88

Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.dagstuhl_choirset.load_audio

load_beat (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.dagstuhl_choirset.load_beat

load_£0 (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.dagstuhl_choirset.load_f0

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError — If the dataset does not support Multitracks

load_score (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.dagstuhl_choirset.load_score

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

2.5.

Dataset Loaders 89

mirdata, Release 0.3.8

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.dagstuhl_choirset.MultiTrack(mtrack_id, data_home, dataset_name, index,
track_class, metadata)
Dagstuhl ChoirSet multitrack class

Parameters
e mtrack_id (str) — multitrack id

» data_home (str) — Local path where the dataset is stored. If None, looks for the data in the
default directory, ~/mir_datasets/dagstuhl_choirset

Variables
* audio_stm_path (str) — path to room mic (mono mixdown) audio file
* audio_str_path (str) — path to room mic (right channel) audio file
* audio_stl_path (str) — path to room mic (left channel) audio file
* audio_rev_path (str)— path to room mic with artifical reverb (mono mixdown) audio file
* audio_spl_path (str) — path to piano accompaniment (left channel) audio file
* audio_spr_path (str) — path to piano accompaniement (right channel) audio file
» beat_path (str) — path to beat annotation file
Other Parameters
* beat (annotations.BeatData) — Beat annotation
* notes (annotations.NoteData) — Note annotation
» multif0 (annotations.MultiFOData) — Aggregate of fO annotations for tracks

property audio_rev: Optional[Tuple[numpy.ndarray, float]]
The audio for the room mic with artifical reverb (mono mixdown)

Returns
 np.ndarray - audio signal
* float - sample rate

property audio_spl: Optional[Tuple[numpy.ndarray, float]]
The audio for the piano accompaniment DI (left channel)

Returns
* np.ndarray - audio signal

¢ float - sample rate

90 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

property audio_spr: Optional[Tuple[numpy.ndarray, float]]
The audio for the piano accompaniment DI (right channel)

Returns
* np.ndarray - audio signal
* float - sample rate

property audio_stl: Optional[Tuple[numpy.ndarray, float]]
The audio for the room mic (left channel)

Returns
* np.ndarray - audio signal
* float - sample rate

property audio_stm: Optional[Tuple[numpy.ndarray, float]]
The audio for the room mic (mono mixdown)

Returns
* np.ndarray - audio signal
* float - sample rate

property audio_str: Optional[Tuple[numpy.ndarray, float]]
The audio for the room mic (right channel)

Returns
* np.ndarray - audio signal
* float - sample rate

get_mix()
Create a linear mixture given a subset of tracks.

Parameters track_keys (/ist) — list of track keys to mix together
Returns np.ndarray — mixture audio with shape (n_samples, n_channels)

get_path(key)
Get absolute path to multitrack audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

get_random_target (n_tracks=None, min_weight=0.3, max_weight=1.0)
Get a random target by combining a random selection of tracks with random weights

Parameters
* n_tracks (int or None) — number of tracks to randomly mix. If None, uses all tracks
* min_weight (float) — minimum possible weight when mixing
* max_weight (float) — maximum possible weight when mixing
Returns
 np.ndarray - mixture audio with shape (n_samples, n_channels)
* list - list of keys of included tracks

e list - list of weights used to mix tracks

2.5.

Dataset Loaders 91

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

get_target (track_keys, weights=None, average=True, enforce_length=True)
Get target which is a linear mixture of tracks

Parameters
* track_keys (/ist) — list of track keys to mix together
 weights (/ist or None) — list of positive scalars to be used in the average

 average (bool) — if True, computes a weighted average of the tracks if False, computes a
weighted sum of the tracks

* enforce_length (bool) — If True, raises ValueError if the tracks are not the same length. If
False, pads audio with zeros to match the length of the longest track

Returns np.ndarray — target audio with shape (n_channels, n_samples)

Raises ValueError — if sample rates of the tracks are not equal if enforce_length=True and
lengths are not equal

to_jams ()
Jams: the track’s data in jams format

class mirdata.datasets.dagstuhl_choirset.Track(track_id, data_home, dataset_name, index, metadata)
Dagstuhl ChoirSet Track class

Parameters track_id (str) — track id of the track
Variables
* audio_dyn_path (str) — dynamic microphone audio path
* audio_hsm_path (str) — headset microphone audio path
* audio_lrx_path (str) — larynx microphone audio path
» f®_crepe_dyn_path (str) — crepe fO annotation for dynamic microphone path
» f0_crepe_hsm_path (str) — crepe fO annotation for headset microphone path
» f0_crepe_lrx_path (str) — crepe fO annotation for larynx microphone path
* f®_pyin_dyn_path (str) - pyin fO annotation for dynamic microphone path
* f®_pyin_hsm_path (str) — pyin fO annotation for headset microphone path
» f0_pyin_lrx_path (str) — pyin fO annotation for larynx microphone path
» f0_manual_lrx_path (str)— manual fO annotation for larynx microphone path
* score_path (str) — score annotation path
Other Parameters
* f0_crepe_dyn (FOData) — algorithm-labeled (crepe) fO annotations for dynamic microphone
* f0_crepe_hsn (FOData) — algorithm-labeled (crepe) fO annotations for headset microphone
* f0_crepe_lrx (FOData) — algorithm-labeled (crepe) fO annotations for larynx microphone
* f0_pyin_dyn (FOData) — algorithm-labeled (pyin) fO annotations for dynamic microphone
* f0_pyin_hsn (FOData) — algorithm-labeled (pyin) fO annotations for headset microphone
* f0_pyin_Irx (FOData) — algorithm-labeled (pyin) fO annotations for larynx microphone
* f0_manual_Irx (FOData) — manually labeled fO annotations for larynx microphone

* score (NoteData) — time-aligned score representation

92 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

property audio_dyn: Optional[Tuple[numpy.ndarray, float]]
The audio for the track’s dynamic microphone (if available)

Returns
* np.ndarray - audio signal
* float - sample rate

property audio_hsm: Optional[Tuple[numpy.ndarray, float]]
The audio for the track’s headset microphone (if available)

Returns
* np.ndarray - audio signal
* float - sample rate

property audio_lrx: Optional[Tuple[numpy.ndarray, float]]
The audio for the track’s larynx microphone (if available)

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Jams: the track’s data in jams format

mirdata.datasets.dagstuhl_choirset.load_audio (fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a Dagstuhl ChoirSet audio file.

Parameters audio_path (str) — path pointing to an audio file
Returns

* np.ndarray - the audio signal

* float - The sample rate of the audio file

mirdata.datasets.dagstuhl_choirset.load_beat (fhandle: TextlO) — mirdata.annotations.BeatData
Load a Dagstuhl ChoirSet beat annotation.

Parameters fhandle (str or file-like) — File-like object or path to beat annotation file
Returns BeatData Object - the beat annotation

mirdata.datasets.dagstuhl_choirset.load_£0 (fhandle: TextIO) — mirdata.annotations.FOData
Load a Dagstuhl ChoirSet FO-trajectory.

Parameters fhandle (str or file-like) — File-like object or path to FO file
Returns FOData Object - the FO-trajectory

mirdata.datasets.dagstuhl_choirset.load_score (fhandle: TextIO) — mirdata.annotations.NoteData
Load a Dagstuhl ChoirSet time-aligned score representation.

Parameters fhandle (str or file-like) — File-like object or path to score representation file

Returns NoteData Object - the time-aligned score representation

2.5. Dataset Loaders

93

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

2.5.16 dali

DALI Dataset Loader

Dataset Info

DALI contains 5358 audio files with their time-aligned vocal melody. It also contains time-aligned lyrics at four levels
of granularity: notes, words, lines, and paragraphs.

For each song, DALI also provides additional metadata: genre, language, musician, album covers, or links to video
clips.

For more details, please visit: https://github.com/gabolsgabs/DALI

class mirdata.datasets.dali.Dataset (data_home=None, version='default")
The dali dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
* bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None)—
e remotes (dict or None) — data to be downloaded
e readme (str) — information about the dataset
* track (function) - a function mapping a track_id to a mirdata.core.Track
* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.

94 Chapter 2. Contributing to mirdata

https://github.com/gabolsgabs/DALI

mirdata, Release 0.3.8

* cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
* I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

. Dataset Loaders 95

mirdata, Release 0.3.8

load_annotations_class(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.dali.load_annotations_class

load_annotations_granularity (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.dali.load_annotations_granularity

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.dali.load_audio

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.dali.Track(track_id, data_home, dataset_name, index, metadata)
DALI melody Track class

Parameters track_id (str) — track id of the track
Variables
e album (str) — the track’s album
* annotation_path (str) — path to the track’s annotation file
e artist (str) — the track’s artist
* audio_path (str) — path to the track’s audio file
* audio_url (str) — youtube ID
e dataset_version (int) — dataset annotation version
* ground_truth (bool) — True if the annotation is verified
* language (str) — sung language

» release_date (str) — year the track was released

96 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* scores_manual (int) — manual score annotations

e scores_ncc (float) — ncc score annotations

e title (str) — the track’s title

» track_id (str) — the unique track id

e url_working (bool) — True if the youtube url was valid
Other Parameters

* notes (NoteData) — vocal notes

* words (LyricData) — word-level lyrics

* lines (LyricData) — line-level lyrics

 paragraphs (LyricData) — paragraph-level lyrics

 annotation-object (DALI Annotations) — DALI annotation object

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
¢ float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.dali.load_annotations_class (annotations_path)
Load full annotations into the DALI class object

Parameters annotations_path (str) — path to a DALI annotation file
Returns DALl annotations — DALI annotations object

mirdata.datasets.dali.load_annotations_granularity (annotations_path, granularity)
Load annotations at the specified level of granularity

Parameters

 annotations_path (str) — path to a DALI annotation file

* granularity (str) — one of ‘notes’, ‘words’, ‘lines’, ‘paragraphs’
Returns NoteData for granularity="notes’” or LyricData otherwise

mirdata.datasets.dali.load_audio(fhandle: BinarylO) — Optional[Tuple[numpy.ndarray, float]]
Load a DALI audio file.

Parameters fhandle (str or file-like) — path or file-like object pointing to an audio file
Returns

* np.ndarray - the mono audio signal

2.5. Dataset Loaders 97

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

* float - The sample rate of the audio file

2.5.17 da_tacos

Da-TACOS Dataset Loader

Dataset Info

Da-TACOS: a dataset for cover song identification and understanding. It contains two subsets, namely the benchmark
subset (for benchmarking cover song identification systems) and the cover analysis subset (for analyzing the links among
cover songs), with pre-extracted features and metadata for 15,000 and 10,000 songs, respectively. The annotations
included in the metadata are obtained with the API of SecondHandSongs.com. All audio files we use to extract features
are encoded in MP3 format and their sample rate is 44.1 kHz. Da-TACOS does not contain any audio files. For the
results of our analyses on modifiable musical characteristics using the cover analysis subset and our initial benchmarking
of 7 state-of-the-art cover song identification algorithms on the benchmark subset, you can look at our publication.

For organizing the data, we use the structure of SecondHandSongs where each song is called a ‘performance’, and each
clique (cover group) is called a ‘work’. Based on this, the file names of the songs are their unique performance IDs
(PID, e.g. P_22), and their labels with respect to their cliques are their work IDs (WID, e.g. W_14).

Metadata for each song includes:
* performance title
* performance artist
* work title
» work artist
* release year
» SecondHandSongs.com performance ID
* SecondHandSongs.com work ID
* whether the song is instrumental or not

In addition, we matched the original metadata with MusicBrainz to obtain MusicBrainz ID (MBID), song length and
genre/style tags. We would like to note that MusicBrainz related information is not available for all the songs in Da-
TACOS, and since we used just our metadata for matching, we include all possible MBIDs for a particular songs.

For facilitating reproducibility in cover song identification (CSI) research, we propose a framework for feature extraction
and benchmarking in our supplementary repository: acoss. The feature extraction component is designed to help CSI
researchers to find the most commonly used features for CSI in a single address. The parameter values we used to
extract the features in Da-TACOS are shared in the same repository. Moreover, the benchmarking component includes
our implementations of 7 state-of-the-art CSI systems. We provide the performance results of an initial benchmarking
of those 7 systems on the benchmark subset of Da-TACOS. We encourage other CSI researchers to contribute to acoss
with implementing their favorite feature extraction algorithms and their CSI systems to build up a knowledge base
where CSI research can reach larger audiences.

Pre-extracted features:

The list of features included in Da-TACOS can be seen below. All the features are extracted with acoss repository that
uses open-source feature extraction libraries such as Essentia, LibROSA, and Madmom.

To facilitate the use of the dataset, we provide two options regarding the file structure.

1. In da-tacos_benchmark_subset_single_files and da-tacos_coveranalysis_subset_single_files folders, we organize the
data based on their respective cliques, and one file contains all the features for that particular song.

98 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

"chroma_cens": numpy.ndarray,
"crema": numpy.ndarray,
"hpcp": numpy.ndarray,
"key_extractor": {
"key": numpy.str_,
"scale": numpy.str_,_
"strength": numpy.float64
1
"madmom_features": {
"novin": numpy.ndarray,
"onsets": numpy.ndarray,
"snovin": numpy.ndarray,
"tempos": numpy.ndarray
}
"mfcc_htk": numpy.ndarray,
"tags": list of (numpy.str_, numpy.str_)
"label": numpy.str_,
"track_id": numpy.str_

2. In da-tacos_benchmark_subset FEATURE and da-tacos_coveranalysis_subset_ FEATURE folders, the data is or-
ganized based on their cliques as well, but each of these folders contain only one feature per song. For instance, if you
want to test your system that uses HPCP features, you can download da-tacos_benchmark_subset_hpcp to access the
pre-computed HPCP features. An example for the contents in those files can be seen below:

{
"hpcp": numpy.ndarray,
"label": numpy.str_,
"track_id": numpy.str_
}

class mirdata.datasets.da_tacos.Dataset (data_home=None, version="default")
The Da-TACOS dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
* name (str) — the identifier of the dataset

* bibtex (str or None) — dataset citation/s in bibtex format

indexes (dict or None)—

remotes (dict or None) - data to be downloaded

e readme (str) — information about the dataset

* track (function) — a function mapping a track_id to a mirdata.core.Track

* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

benchmark_tracks ()
Load from Da-TACOS dataset the benchmark subset tracks.

Returns dict — {track_id: track data}

2.5. Dataset Loaders 99

mirdata, Release 0.3.8

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

coveranalysis_tracks()
Load from Da-TACOS dataset the coveranalysis subset tracks.

Returns dict — {track_id: track data}

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=Fualse, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
* IOError - if a downloaded file’s checksum is different from expected

filter_index(search_key)
Load from Da-TACOS genre dataset the indexes that match with search_key.

Parameters search_key (str) — regex to match with folds, mbid or genres
Returns dict — {track_id: track data}

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

100

Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_cens(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.da_tacos.load_cens

load_crema(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.da_tacos.load_crema

load_hpcp (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.da_tacos.load_hpcp

load_key (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.da_tacos.load_key

load_madmom(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.da_tacos.load_madmom

load_mfcc (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.da_tacos.load_mfcc

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tags (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.da_tacos.load_tags

2.5.

Dataset Loaders 101

mirdata, Release 0.3.8

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate(verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

e list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.da_tacos.Track(track_id, data_home, dataset_name, index, metadata)
da_tacos track class

Parameters track_id (str) — track id of the track
Variables
* subset (str) — subset which the track belongs to
» work_id (str) — id of work’s original track
e label (str) - alias of work_id
e performance_id (str) — id of cover track
» cens_path (str) — cens annotation path

* crema_path (str) — crema annotation path

hpcp_path (str) — hpcp annotation path

key_path (str) — key annotation path

* madmom_path (str) — madmom annotation path

mfcc_path (str) — mfcc annotation path

tags_path (str) — tags annotation path

Properties: work_title (str): title of the work work_artist (str): original artist of the work performance_title
(str): title of the performance performance_artist (str): artist of the performance release_year (str): release
year is_instrumental (bool): True if the track is instrumental performance_artist_mbid (str): musicbrainz
id of the performance artist mb_performances (dict): musicbrainz ids of performances
Other Parameters

* cens (np.ndarray) — chroma-cens features

* hpcep (np.ndarray) — hpcp features

102 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

key (dict) — key data, with keys ‘key’, ‘scale’, and ‘strength’
* madmom (dict) — dictionary of madmom analysis features
» mfcc (np.ndarray) — mfcc features
* tags (list) — list of tags
get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None
Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams() — jams.JAMS
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.da_tacos.load_cens(fhandle: BinarylO)
Load Da-TACOS cens features from a file

Parameters fhandle (str or file-like) — File-like object or path to chroma-cens file
Returns np.ndarray — cens features

mirdata.datasets.da_tacos.load_crema (fhandle: BinarylO)
Load Da-TACOS crema features from a file

Parameters fhandle (str or file-like) — File-like object or path to crema file
Returns np.ndarray — crema features

mirdata.datasets.da_tacos.load_hpcp (fhandle: BinarylO)
Load Da-TACOS hpcp features from a file

Parameters fhandle (str or file-like) — File-like object or path to hpcp file
Returns np.ndarray — hpep features

mirdata.datasets.da_tacos.load_key(fhandle: BinarylO)
Load Da-TACOS key features from a file.

Parameters fhandle (str or file-like) — File-like object or path to key file

Returns dict — key, mode and confidence

Examples

{‘key’: ‘C’, ‘scale’: ‘major’, ‘strength’: 0.8449875116348267}

mirdata.datasets.da_tacos.load_madmom(fhandle: BinarylO)
Load Da-TACOS madmom features from a file

Parameters fhandle (str or file-like) — File-like object or path to madmom file
Returns dict — madmom features, with keys ‘novfn’, ‘onsets’, ‘snovfn’, ‘tempos

mirdata.datasets.da_tacos.load_mfcc(fhandle: BinarylO)
Load Da-TACOS mfcc from a file

Parameters fhandle (str or file-like) — File-like object or path to mfcc file

Returns np.ndarray — array of mfccs over time

2.5. Dataset Loaders 103

https://jams.readthedocs.io/en/stable/generated/jams.JAMS.html#jams.JAMS

mirdata, Release 0.3.8

mirdata.datasets.da_tacos.load_tags (fhandle: BinarylO)
Load Da-TACOS tags from a file

Parameters fhandle (str or file-like) — File-like object or path to tags file

Returns list — tags, in the form [(tag, confidence), ...]

Example

[(‘rock’, ©0.127°), (*pop’, ‘0.014°), ...]

2.5.18 egfxset

EGFxSet Dataset Loader

Dataset Info

EGFxSet (Electric Guitar Effects dataset) features recordings for all clean tones in a 22-fret Stratocaster, recorded
with 5 different pickup configurations, also processed through 12 popular guitar effects. Our dataset was recorded in
real hardware, making it relevant for music information retrieval tasks on real music. We also include annotations for
parameter settings of the effects we used.

EGFxSet is a dataset of 8,970 audio files with a 5-second duration each, summing a total time of - 12 hours and 28
minutes -.

All possible 138 notes of a standard tuning 22 frets guitar were recorded in each one of the 5 pickup configurations,
giving a total of 690 clean tone audio files (58 min).

The 690 clean audio (58 min) files were processed through 12 different audio effects employing actual guitar gear (no
VST emulations were used), summing a total of 8,280 processed audio files (11 hours 30 min).

The effects employed were divided into four categories, and each category comprised three different effects. Sometimes
there were employed more than one effect from a same guitar equipment.

Categories, Models and Effects:
Distortion:
Boss BD-2: Blues Driver
Ibanez Minitube Screamer: Tube Screamer
ProCo RAT2: Distortion
Modulation:
Boss CE-3: Chorus
MXR Phase 45: Phaser
Mooer E-Lady: Flanger
Delays:
Line6 DL-4: Digital Delay, Tape Echo, Sweep Echo
Reverb:
Orange CR-60 Combo Amplifier: Plate Reverb, Hall Reverb, Spring Reverb
Annotations are labeled by a trained electric guitar musician. For each tone, we provide:

* Guitar string number

104 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Fret number

Guitar pickup configuration
Effect name

Effect type

Hardware modes

Knob names

Knob types

Knob settings

The dataset website is: https://egfxset.github.io/

The data can be accessed here: https://zenodo.org/record/7044411#.Y xKdSWzMKEI

An ISMIR extended abstract was presented in 2022: https://ismir2022.ismir.net/program/lbd/

This dataset was conceived during Iran Roman’s “Deep Learning for Music Information Retrieval” course imparted
in the postgraduate studies in music technology at the UNAM (Universidad Nacional Auténoma de México). The
result is a combined effort between two UNAM postgraduate students (Hegel Pedroza and Gerardo Meza) and Iran
Roman(NYU).

class mirdata.datasets.egfxset.Dataset (data_home=None, version='default")

The EGFxSet dataset
Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset

e bibtex (str or None) — dataset citation/s in bibtex format

indexes (dict or None)—

remotes (dict or None) - data to be downloaded

e readme (str) — information about the dataset

» track (function) — a function mapping a track_id to a mirdata.core.Track

» multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

2.5. Dataset Loaders 105

https://egfxset.github.io/
https://zenodo.org/record/7044411#.YxKdSWzMKEI
https://ismir2022.ismir.net/program/lbd/

mirdata, Release 0.3.8

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

« allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
e ValueError - if invalid keys are passed to partial_download
* IOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

o AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (list) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

106 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

» AttributeError - If this dataset does not have tracks
¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.egfxset.Track(track_id, data_home, dataset_name, index, metadata)
EGFxSet Track class

Parameters track_id (str) — track id of the track

Variables
* audio_path (str) — path to the track’s audio file
» stringfret_tuple (1ist) — an array with the tuple of the note recorded
» pickup_configuration (string) — the pickup used in the recording

o effect (str) — the effect recorded

model (str) — the model of the hardware used

effect_type (str) the type of effect used (distortion, modulation,
delay or reverb)—

* knob_names (1ist) — an array with the knob names of the effect used or “None” when the
recording is a clean effect sound

2.5. Dataset Loaders 107

mirdata, Release 0.3.8

* knob_type (1ist) — an array with the type of knobs of the effect used or “None” when the
recording is a clean effect sound

* setting (1ist) - the setting of the effect recorded or “None” when the recording is a clean
effect sound

Other Parameters

* note_name (ndarray) — a list with the note name annotation of the audio file (e.g. “Ab5”,
“C6”, etc.)

¢ midinote (NoteData) — the midinote annotation of the audio file

property audio: Optional[Tuple[numpy.ndarray, float]]
Solo guitar audio (mono)

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.egfxset.load_audio (fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load EGFxSet guitar audio

Parameters fhandle (str or file-like) — File-like object or path to audio file

Returns
* np.ndarray - audio signal

* float - sample rate

2.5.19 filosax

Filosax Dataset Loader

Dataset Info

The Filosax dataset was conceived, curated and compiled by Dave Foster (a PhD student on the AIM programme
at QMUL) and his supervisor Simon Dixon (C4DM @ QMUL). The dataset is a collection of 48 multitrack jazz
recordings, where each piece has 8 corresponding audio files:

1) The original Aebersold backing track (stereo)

2) Bass_Drums, a mono file of a mix of bass and drums
3) Piano_Drums, a mono file of a mix of piano and drums
4) Participant 1 Sax, a mono file of solo saxophone

5) Participant 2 Sax, a mono file of solo saxophone

108 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

6) Participant 3 Sax, a mono file of solo saxophone
7) Participant 4 Sax, a mono file of solo saxophone
8) Participant 5 Sax, a mono file of solo saxophone
Each piece is ~6mins long, so each of the 8 stems contains ~Shours of audio
For each piece, there is a corresponding .jams file containing piece-level annotations:
1) Beat annotation for the start of each bar and any mid-bar chord change
2) Chord annotation for each bar, and mid-bar chord change
3) Section annotation for when the solo changes between the 3 categories:
a) head (melody)
b) written solo (interpretation of transcribed solo)
¢) improvised solo
For each Sax recording (5 per piece), there is a corresponding .json file containing note annotations (see Note object).

The Participant folders also contain MIDI files of the transcriptions (frame level and score level) as well as a PDF and
MusicXML of the typeset solo.

The dataset comes in 2 flavours: full (all 48 tracks and 5 sax players) and lite (5 tracks and 2 sax players). Both flavours
can be used with or without the backing tracks (which need to be purchased online). Hence, when opening the dataset,
use one of 4 versions: ‘full’, ‘full_sax’, ‘lite’, ‘lite_sax’.

class mirdata.datasets.filosax.Dataset (data_home=None, version="default")
The Filosax dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
* bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None) -
e remotes (dict or None) — data to be downloaded
* readme (str) — information about the dataset
* track (function) — a function mapping a track_id to a mirdata.core.Track
* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite(Q)
Print the reference

2.5. Dataset Loaders 109

mirdata, Release 0.3.8

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (list or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
* ValueError - if invalid keys are passed to partial_download
e I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary

Returns dict — a dictionary containing the elements in each split

110 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.filosax.MultiTrack(mtrack_id, data_home, dataset_name, index, track_class,
metadata)
Filosax multitrack class

Parameters
e mtrack_id (str) — multitrack id

» data_home (str) — Local path where the dataset is stored. If None, looks for the data in the
default directory, ~/mir_datasets/Filosax

Variables
e mtrack_id (str) —track id
» tracks (dict) — {track_id: Track}

e track_audio_property (str)—the name of the attribute of Track which returns the audio
to be mixed

2.5. Dataset Loaders 111

mirdata, Release 0.3.8

e name (str) — the name of the tune
e duration (float) — the duration, in seconds
* beats (1ist, Observation) — the time and beat numbers of bars and chord changes
» chords (1ist, Observation) - the time of chord changes
* segments (1ist, Observation) — the time of segment changes
* bass_drums (Track) — the associated bass/drums track
* piano_drums (Track) — the associated piano/drums track
e sax (1ist, Track) - a list of associated sax tracks
Other Parameters annotation (jams.JAMS) — a .jams file containing the annotations

annotation
jams file

Type output type

property bass_drums
The associated bass/drums track

Returns
e Track

property beats
The times of downbeats and chord changes

Returns
* (SortedKeyList, Observation) - timestamp, duration (seconds), beat

property chords
The times and values of chord changes

Returns
* (SortedKeyList, Observation) - timestamp, duration (seconds), chord symbol

property duration
The track’s duration

Returns
e float - track duration (in seconds)

get_mix()
Create a linear mixture given a subset of tracks.

Parameters track_keys (/ist) — list of track keys to mix together
Returns np.ndarray — mixture audio with shape (n_samples, n_channels)

get_path(key)
Get absolute path to multitrack audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

get_random_target (n_tracks=None, min_weight=0.3, max_weight=1.0)
Get a random target by combining a random selection of tracks with random weights

Parameters

112 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* n_tracks (int or None) — number of tracks to randomly mix. If None, uses all tracks
* min_weight (float) — minimum possible weight when mixing
* max_weight (float) — maximum possible weight when mixing
Returns
 np.ndarray - mixture audio with shape (n_samples, n_channels)
» list - list of keys of included tracks
e list - list of weights used to mix tracks

get_target (track_keys, weights=None, average=True, enforce_length=True)
Get target which is a linear mixture of tracks

Parameters
* track_keys (/ist) — list of track keys to mix together
» weights (/ist or None) — list of positive scalars to be used in the average

 average (bool) — if True, computes a weighted average of the tracks if False, computes a
weighted sum of the tracks

« enforce_length (bool) — If True, raises ValueError if the tracks are not the same length. If
False, pads audio with zeros to match the length of the longest track

Returns np.ndarray — target audio with shape (n_channels, n_samples)

Raises ValueError — if sample rates of the tracks are not equal if enforce_length=True and
lengths are not equal

property name
The track’s name

Returns
e str - track name

property piano_drums
The associated piano/drums track

Returns
e Track

property sax
The associated sax tracks (1-5)

Returns
¢ (list, Track)

property segments
The times of segment changes (values are ‘head’, ‘written solo’, ‘improvised solo’)

Returns
* (SortedKeyList, Observation) - timestamp, duration (seconds), beat

to_jams ()
Jams: the track’s data in jams format

class mirdata.datasets.filosax.Note (input_dict)
Filosax Note class - dictionary wrapper to give dot properties

2.5. Dataset Loaders 113

mirdata, Release 0.3.8

Parameters input_dict (dict) — dictionary of attributes

Variables
* a_start_time (float) - the time stamp of the note start, in seconds
* a_end_time (float) — the time stamp of the note end, in seconds
e a_duration (float) — the duration of the note, in seconds

* a_onset_time (float) — the onset time (compared to a_start_time) (filosax_full only, 0.0
otherwise)

midi_pitch (int) - the quantised midi pitch

crochet_num (int) — the number of sub-divisions which define a crochet (always 24)

musician (int) — the participant ID

e bar_num (int) — the bar number of the start of the note

* s_start_time (float) — the time stamp of the score note start, in seconds

e s_duration (float) — the duration of the score note, in seconds

* s_end_time (float) — the time stamp of the score note end, in seconds

e s_rhythmic_duration (int) — the duration of the score note (compared to crochet_num)

e s_rhythmic_position (int) — the position in the bar of the score note start (compared to
crochet_num)

tempo (float) — the tempo at the start of the note, in beats per minute

* bar_type (int) — the section annotation where 0 = head, 1 = written solo, 2 = improvised
solo

is_grace (bool) — is the note a grace note, associated with the following note

* chord_changes (dict) — the chords, where the key is the rhythmic position of the chord
(using crochet_num, relative to s_rhythmic_position) and the value a JAMS chord annotation
(An additional chord is added in the case of a quaver at the end of the bar, followed by a rest
on the downbeat)

* num_chord_changes (int) — the number of chords which accompany the note (usually 1,
sometimes >1 for long notes)

* main_chord_num (int) — usually 0, sometimes 1 in the quaver case described above

* scale_changes (1ist, int)-the degree of the chromatic scale when midi_pitch is com-
pared to chord_root

¢ loudness_max_val (float) — the value (db) of the maximum loudness

* loudness_max_time (float) — the time (seconds) of the maximum loudness (compared
to a_start_time)

* loudness_curve (1ist, float) - the inter-note loudness values, 1 per millisecond
» pitch_average_val (float) — the value (midi) of the average pitch and

» pitch_average_time (float) — the time (seconds) of the average pitch (compared to
a_start_time)

pitch_curve (1ist, float) - the inter-note pitch values, 1 per millisecond

» pitch_vib_freq (float) - the vibrato frequency (Hz), 0.0 if no vibrato detected

114 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

e pitch_vib_ext (float) — the vibrato extent (midi), 0.0 if no vibrato detected
* spec_cent (float) — the spectral centroid value at the time of the maximum loudness
» spec_flux (float) — the spectral flux value at the time of the maximum loudness

» spec_cent_curve (1ist, float)- the inter-note spectral centroid values, 1 per millisec-
ond

» spec_flux_curve (list, float) - the inter-note spectral flux values, 1 per millisecond

* seq_len (int) — the length of the phrase in which the note falls (filosax_full only, -1 other-
wise)

* seq_num (int) — the note position in the phrase (filosax_full only, -1 otherwise)

class mirdata.datasets.filosax.Track(track_id, data_home, dataset_name, index, metadata)
Filosax track class

Parameters track_id (str) — track id of the track
Variables
* audio_path (str) — path to audio file
* annotation_path (str) — path to annotation file
» midi_path (str) — path to MIDI file
* musicXML_path (str) — path to musicXML file
» pdf_path (str) — path to PDF file
Other Parameters notes (/ist, Note) — an ordered list of Note objects

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters Kkey (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

notes
The track’s note list - only for Sax files

Returns
* [Note] - ordered list of Note objects (empty if Backing file)

mirdata.datasets.filosax.load_annotation(fhandle: TextIO) — List[mirdata.datasets.filosax.Note]
Load a Filosax annotation file.

Parameters fhandle (str or file-like) — path or file-like object pointing to an audio file
Returns ** (list, Note)* — an ordered list of Note objects

mirdata.datasets.filosax.load_audio(fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a Filosax audio file.

Parameters fhandle (str or file-like) — path or file-like object pointing to an audio file

2.5. Dataset Loaders 115

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

Returns
* np.ndarray - the audio signal
* float - The sample rate of the audio file

2.5.20 four_way_tabla

Four-Way Tabla Stroke Transcription and Classification Loader

Dataset Info

The Four-Way Tabla Dataset includes audio recordings of tabla solo with onset annotations for particular strokes types.
This dataset was published in 2021 in the context of ISMIR2021 (Online), and may be used for tasks related to tabla
analysis, including problems such as onset detection and stroke classification.

Total audio samples: We do have a total of 226 samples for training and 10 for testing. Each audio has an approximate
duration of 1 minute.

Audio specifications:
» Sampling frequency: 44.1 kHz
* Bit-depth: 16 bit
* Audio format: .wav

Dataset usage: This dataset may be used for the data-driven research of tabla stroke transcription and identification. In
this dataset, four important tabla characteristic strokes are considered.

Dataset structure: The dataset is split in two subsets, containing training and testing samples. Within each subset,
there is a folder containing the audios, and another folder containing the onset annotations. The onset annotations are
organized in a folder per each stroke type: b, d, rb, rt. Therefore, the paths to onsets would look like:

train/onsets/<StrokeType>/<ID>.onsets

The dataset is made available by CompMusic under a Creative Commons Attribution 3.0 Unported (CC BY 3.0) Li-
cense.

class mirdata.datasets. four_way_tabla.Dataset (data_home=None, version="default")
The Four-Way Tabla dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset

e bibtex (str or None) — dataset citation/s in bibtex format

indexes (dict or None)—

remotes (dict or None)— data to be downloaded
e readme (str) — information about the dataset

* track (function) — a function mapping a track_id to a mirdata.core.Track

multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

116 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

» partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

« allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
e I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary

Returns dict — a dictionary containing the elements in each split

. Dataset Loaders 117

mirdata, Release 0.3.8

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets. four_way_tabla.Track(track_id, data_home, dataset_name, index, metadata)
Four-Way Tabla track class

Parameters

118 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

e track_id (str) — track id of the track

* data_home (str) — Local path where the dataset is stored.
Variables

e track_id (str) - track id

e audio_path (str) — audio path

» onsets_b_path (str) — path to B onsets

» onsets_d_path (str) — path to D onsets

» onsets_rb_path (str) — path to RB onsets

* onsets_rt_path (str) — path to RT onsets

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

property onsets_b: Optional[mirdata.annotations.BeatData]
Onsets for stroke B

Returns
¢ annotations.BeatData - onsets annotation

property onsets_d: Optional[mirdata.annotations.BeatData]
Onsets for stroke D

Returns
¢ annotations.BeatData - onsets annotation

property onsets_rb: Optional[mirdata.annotations.BeatData]
Onsets for stroke RB

Returns
¢ annotations.BeatData - onsets annotation

property onsets_rt: Optional[mirdata.annotations.BeatData]
Onsets for stroke RT

Returns
¢ annotations.BeatData - onsets annotation

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.four_way_tabla.load_audio (fhandle: BinarylO) — Tuple[numpy.ndarray, float]

Load a Mridangam Stroke Dataset audio file.

2.5. Dataset Loaders 119

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets. four_way_tabla.load_onsets (fhandle)
Load stroke onsets

Parameters fhandle (str or file-like) — Local path where the pitch annotation is stored.
Returns EventData — onset annotations

2.5.21 freesound_one_shot_percussive_sounds

Freesound One-Shot Percussive Sounds Dataset Loader

Dataset Info
Introduction:

This dataset contains 10254 one-shot (single event) percussive sounds from freesound.org, a timbral analysis computed
by two different extractors (FreesoundExtractor from Essentia and AudioCommons Extractor), and a list of tags. There
is also metadata information about the audio file, since the audio specifications are not the same along all the dataset
tracks. The analysis data was used to train the generative model for “Neural Percussive Synthesis Parameterised by
High-Level Timbral Features”.

Dataset Construction:

To collect this dataset, the following steps were performed: * Freesound was queried with words associated with percus-
sive instruments, such as “percussion”, “kick”, “wood” or “clave”. Only sounds with less than one second of effective
duration were selected. * This stage retrieved some audio clips that contained multiple sound events or that were of low
quality. Therefore, we listened to all the retrieved sounds and manually discarded the sounds presenting one of these
characteristics. For this, the percussive-annotator was used (https://github.com/xavierfav/percussive-annotator). This
tool allows the user to annotate a dataset that focuses on percussive sounds. * The sounds were then cut or padded to
have 1-second length, normalized and downsampled to 16kHz. * Finally, the sounds were analyzed with the Audio-
Commons Extractor, to obtain the AudioCommons timbral descriptors.

Authors and Contact:

This dataset was developed by Anténio Ramires, Pritish Chadna, Xavier Favory, Emilia Gémez and Xavier Serra. Any
questions related to this dataset please contact: Anténio Ramires (antonio.ramires @upf.edu / aframires @ gmail.com)

Acknowledgements:

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Sktodowska-Curie grant agreement No. 765068 (MIP-Frontiers). This work has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agreement No. 770376 (TROMPA).

class mirdata.datasets. freesound_one_shot_percussive_sounds.Dataset (data_home=None,
version="default")
The Freesound One-Shot Percussive Sounds dataset

Variables
» data_home (str) — path where mirdata will look for the dataset

e version (str) —

120 Chapter 2. Contributing to mirdata

https://github.com/xavierfav/percussive-annotator
mailto:antonio.ramires@upf.edu
mailto:aframires@gmail.com

mirdata, Release 0.3.8

e name (str) — the identifier of the dataset
* bibtex (str or None) — dataset citation/s in bibtex format

e indexes (dict or None)—

remotes (dict or None) - data to be downloaded

* readme (str) — information about the dataset

* track (function) — a function mapping a track_id to a mirdata.core.Track

* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

« allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
e I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

2.5.

Dataset Loaders 121

mirdata, Release 0.3.8

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.freesound_one_shot_percussive_sounds.load_audio

load_file_metadata(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.freesound_one_shot_percussive_sounds.load_f
ile_metadata

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

122 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets. freesound_one_shot_percussive_sounds.Track(track_id, data_home,
dataset_name, index,
metadata)
Freesound one-shot percussive sounds track class

Parameters
e track_id (str) — track id of the track

» data_home (str) — Local path where the dataset is stored. If None, looks for the data in the
default directory, ~/mir_datasets/freesound_one_shot_percussive_sounds

Variables

» file_metadata_path (str) — local path where the analysis file is stored and from where
we get the file metadata

* audio_path (str) — local path where audio file is stored

e track_id (str) — track id

» filename (str) — filename of the track

* username (str) — username of the Freesound uploader of the track

* license (str) — link to license of the track file

* tags (1ist) — list of tags of the track

» freesound_preview_urls (dict) — dict of Freesound previews urls of the track

» freesound_analysis (str) — dict of analysis parameters computed in Freesound using
Essentia extractor

* audiocommons_analysis (str) —dict of analysis parameters computed using AudioCom-
mons Extractor

Other Parameters file_metadata (dict) — metadata parameters of the track file in form of Python
dictionary

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

2.5. Dataset Loaders 123

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets. freesound_one_shot_percussive_sounds.load_audio (fhandle: BinarylO) —
Tuple[numpy.ndarray, float]
Load the track audio file.

Parameters fhandle (str) — path to an audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.freesound_one_shot_percussive_sounds.load_file_metadata(fhandle: TextIO) —
Optional[dict]
Extract file metadata from analysis json file

Parameters fhandle (str or file-like) — path or file-like object pointing to fO annotation file
Returns analysis — track analysis dict

2.5.22 giantsteps_key

giantsteps_key Dataset Loader

Dataset Info

The GiantSteps+ EDM Key Dataset includes 600 two-minute sound excerpts from various EDM subgenres, annotated
with single-key labels, comments and confidence levels by Daniel G. Camhi, and thoroughly revised and expanded
by Angel Faraldo at MTG UPF. Additionally, 500 tracks have been thoroughly analysed, containing pitch-class set
descriptions, key changes, and additional modal changes. This dataset is a revision of the original GiantSteps Key
Dataset, available in Github (<https://github.com/GiantSteps/giantsteps-key-dataset>) and initially described in:

Knees, P., Faraldo, A., Herrera, P., Vogl, R., Bock, S., Horschldger, F., Le Goff, M..,
- (2015).

Two Datasets for Tempo Estimation and Key Detection in Electronic Dance Music Annotated.
—from User Corrections.

In Proceedings of the 16th International Society for Music Information Retrieval..
—Conference, 364-370. Malaga, Spain.

The original audio samples belong to online audio snippets from Beatport, an online music store for DJ’s and Electronic
Dance Music Producers (<http:www.beatport.com>). If this dataset were used in further research, we would appreciate
the citation of the current DOI (10.5281/zenodo.1101082) and the following doctoral dissertation, where a detailed
description of the properties of this dataset can be found:

Angel Faraldo (2017). Tonality Estimation in Electronic Dance Music: A Computational and..
—Musically Informed Examination.
PhD Thesis. Universitat Pompeu Fabra, Barcelona.

This dataset is mainly intended to assess the performance of computational key estimation algorithms in electronic
dance music subgenres.

124 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://github.com/GiantSteps/giantsteps-key-dataset
http:www.beatport.com

mirdata, Release 0.3.8

All the data of this dataset is licensed with Creative Commons Attribution Share Alike 4.0 International.

class mirdata.datasets.giantsteps_key.Dataset (data_home=None, version="default")
The giantsteps_key dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
e bibtex (str or None)— dataset citation/s in bibtex format
e indexes (dict or None) -
e remotes (dict or None)— data to be downloaded
e readme (str) — information about the dataset
* track (function) - a function mapping a track_id to a mirdata.core.Track
» multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
» TOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

2.5. Dataset Loaders 125

mirdata, Release 0.3.8

Raises

» AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (list) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError — If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_artist (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.giantsteps_key.load_artist

load_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.giantsteps_key.load_audio

load_genre (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.giantsteps_key.load_genre

load_key (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.giantsteps_key.load_key

load_multitracks()
Load all multitracks in the dataset

126 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError — If the dataset does not support Multitracks

load_tempo (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.giantsteps_key.load_tempo

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

e list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.giantsteps_key.Track(track_id, data_home, dataset_name, index, metadata)
giantsteps_key track class

Parameters track_id (str) — track id of the track
Variables
* audio_path (str) — track audio path
* keys_path (str) — key annotation path
» metadata_path (str) — sections annotation path
e title (str) —title of the track
e track_id (str) — track id
Other Parameters
* key (str) — musical key annotation
* artists (list) — list of artists involved
* genres (dict) — genres and subgenres
 tempo (int) — crowdsourced tempo annotations in beats per minute

property audio: Tuple[numpy.ndarray, float]
The track’s audio

Returns

* np.ndarray - audio signal

2.5. Dataset Loaders 127

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.giantsteps_key.load_artist(fhandle: TextIO) — List[str]
Load giantsteps_key tempo data from a file

Parameters fhandle (str or file-like) — File-like object or path pointing to metadata annotation file
Returns list — list of artists involved in the track.

mirdata.datasets.giantsteps_key.load_audio(fpath: str) — Tuple[numpy.ndarray, float]
Load a giantsteps_key audio file.

Parameters fpath (str) — str pointing to an audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.giantsteps_key.load_genre (fhandle: TextIO) — Dict[str, List[str]]
Load giantsteps_key genre data from a file

Parameters fhandle (str or file-like) — File-like object or path pointing to metadata annotation file
Returns dict — {‘genres’: [...], ‘subgenres’: [...]}

mirdata.datasets.giantsteps_key.load_key (fhandle: TextIO) — str
Load giantsteps_key format key data from a file

Parameters fhandle (str or file-like) — File like object or string pointing to key annotation file
Returns str —loaded key data

mirdata.datasets.giantsteps_key.load_tempo (fhandle: TextIO) — str
Load giantsteps_key tempo data from a file

Parameters fhandle (str or file-like) — File-like object or string pointing to metadata annotation file
Returns str —loaded tempo data

2.5.23 giantsteps_tempo

giantsteps_tempo Dataset Loader

Dataset Info

GiantSteps tempo + genre is a collection of annotations for 664 2min(1) audio previews from www.beatport.com,
created by Richard Vogl <richard.vogl@tuwien.ac.at> and Peter Knees <peter.knees @tuwien.ac.at>

references:

The audio files (664 files, size ~1gb) can be downloaded from http://www.beatport.com/ using the bash script:

128 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
mailto:richard.vogl@tuwien.ac.at
mailto:peter.knees@tuwien.ac.at
http://www.beatport.com/

mirdata, Release 0.3.8

https://github.com/GiantSteps/giantsteps-tempo-dataset/blob/master/audio_dl.sh

To download the files manually use links of the following form: http://geo-samples.beatport.com/lofi/<name of mp3
file> e.g.: http://geo-samples.beatport.com/lofi/5377710.LOFL.mp3

To convert the audio files to .wav use the script found at https://github.com/GiantSteps/giantsteps-tempo-dataset/blob/
master/convert_audio.sh and run:

./convert_audio.sh

To retrieve the genre information, the JSON contained within the website was parsed. The tempo annotation was ex-
tracted from forum entries of people correcting the bpm values (i.e. manual annotation of tempo). For more information
please refer to the publication [giantsteps_tempo_cit_1].

[giantsteps_tempo_cit_2] found some files without tempo. There are:

3041381.LOFI.mp3
3041383.LOFI.mp3
1327052 .LOFI.mp3

Their v2 tempo is denoted as 0.0 in tempo and mirex and has no annotation in the JAMS format.

Most of the audio files are 120 seconds long. Exceptions are:

name length (sec)
906760.LOFI.mp3 62
1327052.LOFI.mp3 70
4416506.LOFI.mp3 80
1855660.LOFI.mp3 119

3419452 .LOFI.mp3 119
3577631.LOFI.mp3 119

class mirdata.datasets.giantsteps_tempo.Dataset (data_home=None, version='default")
The giantsteps_tempo dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
e bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None)—
e remotes (dict or None)— data to be downloaded
e readme (str) — information about the dataset
* track (function) — a function mapping a track_id to a mirdata.core.Track
e multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

2.5. Dataset Loaders 129

https://github.com/GiantSteps/giantsteps-tempo-dataset/blob/master/audio_dl.sh
http://geo-samples.beatport.com/lofi
http://geo-samples.beatport.com/lofi/5377710.LOFI.mp3
https://github.com/GiantSteps/giantsteps-tempo-dataset/blob/master/convert_audio.sh
https://github.com/GiantSteps/giantsteps-tempo-dataset/blob/master/convert_audio.sh

mirdata, Release 0.3.8

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=Fualse, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
* I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

130 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.giantsteps_tempo.load_audio

load_genre (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.giantsteps_tempo.load_genre

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tempo (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.giantsteps_tempo.load_tempo

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.giantsteps_tempo.Track(track_id, data_home, dataset_name, index, metadata)
giantsteps_tempo track class

2.5. Dataset Loaders 131

mirdata, Release 0.3.8

Parameters track_id (str) — track id of the track
Variables
* audio_path (str) — track audio path
e title (str) - title of the track
e track_id (str) — track id
e annotation_vl_path (str) - track annotation v1 path
* annotation_v2_path (str) - track annotation v2 path
Other Parameters
* genre (dict) — Human-labeled metadata annotation
* tempo (list) — List of annotations.TempoData, ordered by confidence
* tempo_v2 (list) — List of annotations.TempoData for version 2, ordered by confidence

property audio: Tuple[numpy.ndarray, float]
The track’s audio

Returns
* np.ndarray - audio signal
¢ float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

to_jams_v2()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.giantsteps_tempo.load_audio (fhandle: str) — Tuple[numpy.ndarray, float]
Load a giantsteps_tempo audio file.

Parameters fhandle (str or file-like) — path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.giantsteps_tempo.load_genre(fhandle: TextlO) — str
Load genre data from a file

Parameters path (str) — path to metadata annotation file
Returns str — loaded genre data

mirdata.datasets.giantsteps_tempo.load_tempo (fhandle: TextlO) — mirdata.annotations.TempoData
Load giantsteps_tempo tempo data from a file ordered by confidence

132 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

Parameters fhandle (str or file-like) — File-like object or path to tempo annotation file

Returns annotations.TempoData — Tempo data

2.5.24 good_sounds

Good-Sounds Dataset Loader

Dataset Info

The Good-Sounds dataset is born of the collaboration between the Music Technology Group and Korg. Good-Sounds
[2, 16] is carried out recording a training dataset of single note excerpts including six classes of sounds per studied
instrument. Twelve different instruments are recorded, as is shown in Table 2. For each instrument, the complete range
of playable semitones is captured several times with various tonal characteristics. There are two classes: Good and Bad
sounds. Bad sounds are divided into five sub-classes, one for each musical dimension stated by the expert musicians.
Bad sounds are composed by examples of note recordings that are intentionally badly played. The last class includes
examples of note recordings that are considered to be well played.

This dataset was created in the context of the Pablo project, partially funded by KORG Inc. It contains monophonic
recordings of two kind of exercises: single notes and scales. The recordings were made in the Universitat Pompeu Fabra
/ Phonos recording studio by 15 different professional musicians, all of them holding a music degree and having some
expertise in teaching. 12 different instruments were recorded using one or up to 4 different microphones (depending on
the recording session). For all the instruments the whole set of playable semitones in the instrument is recorded several
times with different tonal characteristics. Each note is recorded into a separate mono .flac audio file of 48kHz and 32
bits. The tonal characteristics are explained both in the the following section and the related publication. The database
is meant for organizing the sounds in a handy way. It is organised in four different entities: sounds, takes, packs and
ratings.

class mirdata.datasets.good_sounds.Dataset (data_home=None, version="default")
The GOOD-SOUNDS dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
* name (str) — the identifier of the dataset

* bibtex (str or None) — dataset citation/s in bibtex format

indexes (dict or None)—

remotes (dict or None) - data to be downloaded

e readme (str) — information about the dataset

* track (function) — a function mapping a track_id to a mirdata.core.Track

* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

2.5. Dataset Loaders 133

mirdata, Release 0.3.8

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns szr — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

« force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
* ValueError - if invalid keys are passed to partial_download
e TOError — if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

» AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

134 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.good_sounds.load_audio

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError — If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.good_sounds.Track(track_id, data_home, dataset_name, index, metadata)
GOOD-SOUNDS Track class

Parameters track_id (str) — track id of the track
Variables audio_path (str) — Path to the audio file
Other Parameters

* ratings_info (dict) — A dictionary containing the entity Ratings.

2.5. Dataset Loaders 135

mirdata, Release 0.3.8

* Some musicians self-rated their performance in a 0-10 goodness scale for the user eval-
uation of the first project

* prototype. Please read the paper for more detailed information. —
-id
— mark: the rate or score.
— type: the klass of the sound. Related to the tags of the sound.
— created_at
— comments
— sound_id

rater: the musician who rated the sound.

» pack_info (dict) — A dictionary containing the entity Pack. A pack is a group of sounds
from the same recording session. The audio files are organised in the sound_files directory
in subfolders with the pack name to which they belong. The following metadata is associated
with the entity Pack. - id - name - description

* sound_info (dict) — A dictionary containing the entity Sound. A sound can have several
takes as some of them were recorded using different microphones at the same time. The
following metadata is associated with the entity Sound. - id - instrument: flute, cello, clarinet,
trumpet, violin, sax_alto, sax_tenor, sax_baritone, sax_soprano, oboe, piccolo, bass - note -
octave - dynamics: for some sounds, the musical notation of the loudness level (p, mf, f..)
- recorded_at: recording date and time - location: recording place - player: the musician
who recorded. For detailed information about the musicians contact us. - bow_velocity: for
some string instruments the velocity of the bow (slow, medieum, fast) - bridge_position: for
some string instruments the position of the bow (tasto, middle, ponticello) - string: for some
string instruments the number of the string in which the sound it’s played (1: lowest in pitch)
- csv_file: used for creation of the DB - csv_id: used for creation of the DB - pack_filename:
used for creation of the DB - pack_id: used for creation of the DB - attack: for single notes,
manual annotation of the onset in samples. - decay: for single notes, manual annotation of
the decay in samples. - sustain: for single notes, manual annotation of the beginnig of the
sustained part in samples. - release: for single notes, manual annotation of the beginnig
of the release part in samples. - offset: for single notes, manual annotation of the offset in
samples - reference: 1 if sound was used to create the models in the good-sounds project, O
if not. - Other tags regarding tonal characteristics are also available. - comments: if any -
semitone: midi note - pitch_reference: the reference pitch - klass: user generated tags of the
tonal qualities of the sound. They also contain information about the exercise, that could be
single note or scale. * “good-sound”: good examples of single note * “bad”: bad example
of one of the sound attributes defined in the project (please read the papers for a detailed
explanation) * “scale-good”: good example of a one octave scale going up and down (15
notes). If the scale is minor a tagged “minor” is also available. * “scale-bad”: bad example
scale of one of the sounds defined in the project. (15 notes up and down).

* take_info (dict) — A dictionary containing the entity Take. A sound can have several takes as
some of them were recorded using different microphones at the same time. Each take has an
associated audio file. The annotations. Each take has an associated audio file. The following
metadata is associated with the entity Sound. - id - microphone - filename: the name of
the associated audio file - original_filename: - freesound_id: for some sounds uploaded to
freesound.org - sound_id: the id of the sound in the DB - goodsound_id: for some of the
sounds available in good-sounds.org

* microphone (str) — the microphone used to record the take.

136 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* instrument (str) — the instrument recorded (flute, cello, clarinet, trumpet, violin, sax_alto,
sax_tenor, sax_baritone, sax_soprano, oboe, piccolo, bass).

* Kklass (str) — user generated tags of the tonal qualities of the sound. They also contain in-
formation about the exercise, that could be single note or scale. * “good-sound”: good
examples of single note * “bad”: bad example of one of the sound attributes defined in the
project (please read the papers for a detailed explanation) * “scale-good”: good example of
a one octave scale going up and down (15 notes). If the scale is minor a tagged “minor” is
also available. * “scale-bad”: bad example scale of one of the sounds defined in the project.
(15 notes up and down).

¢ semitone (int) — midi note
* pitch_reference (int) — the reference pitch

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
 np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

mirdata.datasets.good_sounds.load_audio (fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a GOOD-SOUNDS audio file.

Parameters fhandle (str or file-like) — path or file-like object pointing to an audio file
Returns
* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

2.5.25 groove_midi

Groove MIDI Loader

Dataset Info

The Groove MIDI Dataset (GMD) is composed of 13.6 hours of aligned MIDI and synthesized audio of human-
performed, tempo-aligned expressive drumming. The dataset contains 1,150 MIDI files and over 22,000 measures
of drumming.

To enable a wide range of experiments and encourage comparisons between methods on the same data, Gillick et al.
created a new dataset of drum performances recorded in MIDI format. They hired professional drummers and asked
them to perform in multiple styles to a click track on a Roland TD-11 electronic drum kit. They also recorded the
aligned, high-quality synthesized audio from the TD-11 and include it in the release.

The Groove MIDI Dataset (GMD), has several attributes that distinguish it from existing ones:
 The dataset contains about 13.6 hours, 1,150 MIDI files, and over 22,000 measures of drumming.

* Each performance was played along with a metronome set at a specific tempo by the drummer.

2.5. Dataset Loaders 137

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

The data includes performances by a total of 10 drummers, with more than 80% of duration coming from hired
professionals. The professionals were able to improvise in a wide range of styles, resulting in a diverse dataset.

The drummers were instructed to play a mix of long sequences (several minutes of continuous playing) and short
beats and fills.

Each performance is annotated with a genre (provided by the drummer), tempo, and anonymized drummer ID.
Most of the performances are in 4/4 time, with a few examples from other time signatures.

Four drummers were asked to record the same set of 10 beats in their own style. These are included in the test
set split, labeled eval-session/groovel-10.

In addition to the MIDI recordings that are the primary source of data for the experiments in this work, the authors
captured the synthesized audio outputs of the drum set and aligned them to within 2ms of the corresponding MIDI
files.

A train/validation/test split configuration is provided for easier comparison of model accuracy on various tasks.

The dataset is made available by Google LLC under a Creative Commons Attribution 4.0 International (CC BY 4.0)
License.

For more details, please visit: http://magenta.tensorflow.org/datasets/groove

class mirdata.datasets.groove_midi.Dataset (data_home=None, version="default")

The groove_midi dataset
Variables

* data_home (str) — path where mirdata will look for the dataset
e version (str) —
* name (str) — the identifier of the dataset
* bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None) -
e remotes (dict or None) - data to be downloaded
e readme (str) — information about the dataset
* track (function) — a function mapping a track_id to a mirdata.core.Track
* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

138

Chapter 2. Contributing to mirdata

http://magenta.tensorflow.org/datasets/groove

mirdata, Release 0.3.8

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

« allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
e ValueError - if invalid keys are passed to partial_download
* IOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

o AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (list) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

2.5.

Dataset Loaders 139

mirdata, Release 0.3.8

» AttributeError - If this dataset does not have tracks
¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.groove_midi.load_audio

load_beats (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.groove_midi.load_beats

load_drum_events (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.groove_midi.load_drum_events

load_midi (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.groove_midi.load_midi

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.groove_midi.Track(track_id, data_home, dataset_name, index, metadata)
Groove MIDI Track class

Parameters track_id (str) — track id of the track
Variables
e drummer (str) — Drummer id of the track (ex. ‘drummerl’)
» session (str)— Type of session (ex. ‘sessionl’, ‘eval_session’)

e track_id (str) — track id of the track (ex. ‘drummerl/eval_session/1”)

140 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

» style (str) — Style (genre, groove type) of the track (ex. ‘funk/groovel’)

* tempo (int) — track tempo in beats per minute (ex. 138)

* beat_type (str) — Whether the track is a beat or a fill (ex. ‘beat’)

* time_signature (str)— Time signature of the track (ex. ‘4-4’°, ‘6-8”)

e midi_path (str) — Path to the midi file

e audio_path (str) — Path to the audio file

e duration (float) — Duration of the midi file in seconds

e split (str)— Whether the track is for a train/valid/test set. One of ‘train’, ‘valid’ or ‘test’.
Other Parameters

* beats (BeatData) — Machine-generated beat annotations

e drum_events (EventData) — Annotated drum kit events

* midi (pretty_midi.PrettyMIDI) — object containing MIDI information

property audio: Tuple[Optional[numpy.ndarray], Optional[float]]
The track’s audio

Returns
 np.ndarray - audio signal
¢ float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.groove_midi.load_audio(path: str) — Tuple[Optional[numpy.ndarray], Optional[float]]
Load a Groove MIDI audio file.

Parameters path — path to an audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.groove_midi.load_beats (midi_path, midi=None)
Load beat data from the midi file.

Parameters
* midi_path (str) — path to midi file

* midi (pretty_midi.PrettyMIDI) — pre-loaded midi object or None if None, the midi object is
loaded using midi_path

Returns annotations.BeatData — machine generated beat data

2.5. Dataset Loaders 141

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

mirdata.datasets.groove_midi.load_drum_events (midi_path, midi=None)
Load drum events from the midi file.

Parameters
* midi_path (str) — path to midi file

* midi (pretty_midi.PrettyMIDI) — pre-loaded midi object or None if None, the midi object is
loaded using midi_path

Returns annotations. EventData — drum event data

mirdata.datasets.groove_midi.load_midi (fhandle: BinarylO) — Optional[pretty_midi.PrettyMIDI]
Load a Groove MIDI midi file.

Parameters fhandle (str or file-like) — File-like object or path to midi file

Returns midi_data (pretty_midi. PrettyMIDI) — pretty_midi object

2.5.26 gtzan_genre

GTZAN-Genre Dataset Loader

Dataset Info

This dataset was used for the well known genre classification paper:

"Musical genre classification of audio signals " by G. Tzanetakis and
P. Cook in IEEE Transactions on Audio and Speech Processing 2002.

The dataset consists of 1000 audio tracks each 30 seconds long. It contains 10 genres, each represented by 100 tracks.
The tracks are all 22050 Hz mono 16-bit audio files in .wav format.

class mirdata.datasets.gtzan_genre.Dataset (data_home=None, version="default")
The gtzan_genre dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
e bibtex (str or None) — dataset citation/s in bibtex format
* indexes (dict or None)—
e remotes (dict or None)— data to be downloaded
e readme (str) — information about the dataset
* track (function) — a function mapping a track_id to a mirdata.core.Track
* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

142 Chapter 2. Contributing to mirdata

https://craffel.github.io/pretty-midi/index.html#pretty_midi.PrettyMIDI

mirdata, Release 0.3.8

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=Fualse, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
* I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

. Dataset Loaders 143

mirdata, Release 0.3.8

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.gtzan_genre.load_audio

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.gtzan_genre.Track(track_id, data_home, dataset_name, index, metadata)
gtzan_genre Track class

Parameters track_id (str) — track id of the track
Variables

* audio_path (str) — path to the audio file

144 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* genre (str) — annotated genre
e track_id (str) — track id
Other Parameters
¢ beats (BeatData) — human-labeled beat annotations
 tempo (float) — global tempo annotations

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
 np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.gtzan_genre.load_audio (fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a GTZAN audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.gtzan_genre.load_beats (fhandle: TextIO) — mirdata.annotations.BeatData
Load GTZAN format beat data from a file

Parameters fhandle (str or file-like) — path or file-like object pointing to a beat annotation file
Returns BeatData — loaded beat data

mirdata.datasets.gtzan_genre.load_tempo (fhandle: TextIO) — float
Load GTZAN format tempo data from a file

Parameters fhandle (str or file-like) — path or file-like object pointing to a beat annotation file

Returns tempo (float) — loaded tempo data

2.5. Dataset Loaders

145

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

2.5.27 guitarset

GuitarSet Loader

Dataset Info

GuitarSet provides audio recordings of a variety of musical excerpts played on an acoustic guitar, along with time-
aligned annotations including pitch contours, string and fret positions, chords, beats, downbeats, and keys.

GuitarSet contains 360 excerpts that are close to 30 seconds in length. The 360 excerpts are the result of the following
combinations:

* 6 players
» 2 versions: comping (harmonic accompaniment) and soloing (melodic improvisation)
5 styles: Rock, Singer-Songwriter, Bossa Nova, Jazz, and Funk
* 3 Progressions: 12 Bar Blues, Autumn Leaves, and Pachelbel Canon.
* 2 Tempi: slow and fast.
The tonality (key) of each excerpt is sampled uniformly at random.

GuitarSet was recorded with the help of a hexaphonic pickup, which outputs signals for each string separately, allow-
ing automated note-level annotation. Excerpts are recorded with both the hexaphonic pickup and a Neumann U-87
condenser microphone as reference. 3 audio recordings are provided with each excerpt with the following suffix:

* hex: original 6 channel wave file from hexaphonic pickup
* hex_cln: hex wave files with interference removal applied
* mic: monophonic recording from reference microphone
* mix: monophonic mixture of original 6 channel file

Each of the 360 excerpts has an accompanying JAMS file which stores 16 annotations. Pitch:
* 6 pitch_contour annotations (1 per string)
* 6 midi_note annotations (1 per string)

Beat and Tempo:
* 1 beat_position annotation
* 1 tempo annotation

Chords:

2 chord annotations: instructed and performed. The instructed chord annotation is a digital version of the lead
sheet that’s provided to the player, and the performed chord annotations are inferred from note annotations, using
segmentation and root from the digital lead sheet annotation.

For more details, please visit: http://github.com/marl/guitarset/

class mirdata.datasets.guitarset.Dataset (data_home=None, version='default")
The guitarset dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —

e name (str) — the identifier of the dataset

146 Chapter 2. Contributing to mirdata

http://github.com/marl/guitarset/

mirdata, Release 0.3.8

e bibtex (str or None) — dataset citation/s in bibtex format

e indexes (dict or None)—

remotes (dict or None)— data to be downloaded

e readme (str) — information about the dataset

track (function) — a function mapping a track_id to a mirdata.core.Track

multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=Fualse, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
» TOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError — If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

2.5.

Dataset Loaders 147

mirdata, Release 0.3.8

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.guitarset.load_audio

load_beats(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.guitarset.load_beats

load_chords (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.guitarset.load_chords

load_key_mode (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.guitarset.load_key_mode

load_multitrack_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.guitarset.load_multitrack_audio

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_notes(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.guitarset.load_notes

load_pitch_contour (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.guitarset.load_pitch_contour

148 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate(verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

e list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.guitarset.Track(track_id, data_home, dataset_name, index, metadata)
guitarset Track class

Parameters track_id (str) — track id of the track

Variables
* audio_hex_cln_path (str) — path to the debleeded hex wave file
* audio_hex_path (str) — path to the original hex wave file
* audio_mic_path (str) — path to the mono wave via microphone

* audio_mix_path (str) — path to the mono wave via downmixing hex pickup

jams_path (str) — path to the jams file

>

mode (str)—one of [‘solo’, ‘comp’] For each excerpt, players are asked to first play in ‘comp
mode and later play a ‘solo’ version on top of the already recorded comp.

player_id (str) — ID of the different players. one of [‘00°, ‘01, ... , ‘05’]
* style (str) —one of [‘Jazz’, ‘Bossa Nova’, ‘Rock’, ‘Singer-Songwriter’, ‘Funk’]
e tempo (float) — BPM of the track
e track_id (str) - track id
Other Parameters
* beats (BeatData) — beat positions
* leadsheet_chords (ChordData) — chords as written in the leadsheet
* inferred_chords (ChordData) — chords inferred from played transcription
* key_mode (KeyData) — key and mode

* pitch_contours (dict) — Pitch contours per string - ‘E’: FOData(...) - ‘A’: FOData(...) - ‘D’:
FOData(...) - ‘G’: FOData(...) - ‘B’: FOData(...) - ‘e’: FOData(...)

2.5. Dataset Loaders 149

mirdata, Release 0.3.8

* multif0 (MultiFOData) — all pitch contour data as one multifO annotation

* notes (dict) — Notes per string - ‘E’: NoteData(...) - ‘A’: NoteData(...) - ‘D’: NoteData(...)
- ‘G’: NoteData(...) - ‘B’: NoteData(...) - ‘e’: NoteData(...)

 notes_all (NoteData) — all note data as one note annotation

property audio_hex: Optional[Tuple[numpy.ndarray, float]]
Hexaphonic audio (6-channels) with one channel per string

Returns
* np.ndarray - audio signal
* float - sample rate
property audio_hex_cln: Optional[Tuple[numpy.ndarray, float]]

Hexaphonic audio (6-channels) with one channel per string after bleed removal

Returns
* np.ndarray - audio signal
* float - sample rate

property audio_mic: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

property audio_mix: Optional[Tuple[numpy.ndarray, float]]
Mixture audio (mono)

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.guitarset.load_audio(fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a Guitarset audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns
* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

150 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

mirdata.datasets.guitarset.load_beats(fhandle: TextlO) — mirdata.annotations.BeatData
Load a Guitarset beats annotation.

Parameters fhandle (str or file-like) — File-like object or path of the jams annotation file
Returns BeatData — Beat data

mirdata.datasets.guitarset.load_chords (jams_path, leadsheet_version)
Load a guitarset chord annotation.

Parameters
* jams_path (str) — path to the jams annotation file

* leadsheet_version (Bool) — Whether or not to load the leadsheet version of the chord anno-
tation If False, load the infered version.

Returns ChordData — Chord data

mirdata.datasets.guitarset.load_key_mode (fhandle: TextlO) — mirdata.annotations.KeyData
Load a Guitarset key-mode annotation.

Parameters fhandle (str or file-like) — File-like object or path of the jams annotation file
Returns KeyData — Key data

mirdata.datasets.guitarset.load_multitrack_audio(fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a Guitarset multitrack audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.guitarset.load_notes (jams_path, string_num)
Load a guitarset note annotation for a given string

Parameters
* jams_path (str) — path to the jams annotation file

* string_num (int), in range(6) — Which string to load. 0 is the Low E string, 5 is the high e
string.

Returns NoteData — Note data for the given string

mirdata.datasets.guitarset.load_pitch_contour (jams_path, string_num)
Load a guitarset pitch contour annotation for a given string

Parameters
* jams_path (str) — path to the jams annotation file

* string_num (int), in range(6) — Which string to load. 0 is the Low E string, 5 is the high e
string.

Returns FOData — Pitch contour data for the given string

2.5. Dataset Loaders 151

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

2.5.28 haydn_op20

haydn op20 Dataset Loader

Dataset Info

This dataset accompanies the Master Thesis from Nestor Napoles. It is a manually-annotated corpus of harmonic
analysis in harm syntax.

This dataset contains 30 pieces composed by Joseph Haydn in symbolic format, which have each been manually anno-
tated with harmonic analyses.

class mirdata.datasets.haydn_op20.Dataset (data_home=None, version="default")
The haydn op20 dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
e bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None)—
e remotes (dict or None)— data to be downloaded
e readme (str) — information about the dataset
* track (function) — a function mapping a track_id to a mirdata.core.Track
e multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns szr — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.

¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

152 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
e TOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

» AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_chords (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.haydn_op20.load_chords

2.5.

Dataset Loaders 153

mirdata, Release 0.3.8

load_chords_music21(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.haydn_op20.load_chords_music21

load_key (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.haydn_op20.load_key

load_key_music21(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.haydn_op20.load_key_music21

load_midi_path(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.haydn_op20.convert_and_save_to_midi

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError — If the dataset does not support Multitracks

load_roman_numerals (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.haydn_op20.load_roman_numerals

load_score(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.haydn_op20.load_score

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.haydn_op20.Track(track_id, data_home, dataset_name, index, metadata)
haydn op20 track class

Parameters track_id (str) — track id of the track
Variables
e title (str) —title of the track
e track_id (str) — track id
* humdrum_annotated_path (str) — path to humdrum annotated score

Other Parameters

154 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* keys (KeyData) — annotated local keys.

* keys_music21 (/ist) — annotated local keys.

e roman_numerals (/ist) — annotated roman_numerals.
e chords (ChordData) — annotated chords.

¢ chords_music21 (/ist) — annotated chords.

¢ duration (int) — relative duration

* midi_path (str) — path to midi

e score (music21.stream.Score) — music21 score

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.haydn_op20.convert_and_save_to_midi (fpath: TextlO)
convert to midi file and return the midi path

Parameters fpath (str or file-like) — path to score file
Returns str — midi file path
Deprecated since version 0.3.4: convert_and_save_to_midi is deprecated and will be removed in a future version

mirdata.datasets.haydn_op20.load_chords (fhandle: TextlO, resolution: int = 28)
Load haydn op20 chords data from a file

Parameters

* fhandle (str or file-like) — path to chord annotations

* resolution (inf) — the number of pulses, or ticks, per quarter note (PPQ)
Returns ChordData — chord annotations

mirdata.datasets.haydn_op20.load_chords_music21(fhandle: TextlO, resolution: int = 28)
Load haydn op20 chords data from a file in music21 format

Parameters
* fhandle (str or file-like) — path to chord annotations
* resolution (int) — the number of pulses, or ticks, per quarter note (PPQ)

Returns /ist — musical chords data and relative time (offset (Music21Object.offset) * resolution)
[(time in PPQ, chord)]

mirdata.datasets.haydn_op20.load_key (fhandle: TextlO, resolution=28)
Load haydn op20 key data from a file

Parameters
* fhandle (str or file-like) — path to key annotations

* resolution (int) — the number of pulses, or ticks, per quarter note (PPQ)

2.5. Dataset Loaders 155

mirdata, Release 0.3.8

Returns KeyData — loaded key data

mirdata.datasets.haydn_op20.load_key_music21(fhandle: TextlO, resolution=28)
Load haydn op20 key data from a file in music21 format

Parameters
* fhandle (str or file-like) — path to key annotations
* resolution (int) — the number of pulses, or ticks, per quarter note (PPQ)

Returns /ist — musical key data and relative time (offset (Music210bject.offset) * resolution) [(time
in PPQ, local key)]

mirdata.datasets.haydn_op20.load_roman_numerals (fhandle: TextlO, resolution=28)
Load haydn op20 roman numerals data from a file

Parameters
* fhandle (str or file-like) — path to roman numeral annotations
* resolution (int) — the number of pulses, or ticks, per quarter note (PPQ)

Returns /ist — musical roman numerals data and relative time (offset (Music21Object.offset) * reso-
lution) [(time in PPQ, roman numerals)]

mirdata.datasets.haydn_op20.load_score(fhandle: TextlO)
Load haydn op20 score with annotations from a file with music21 format (music21.stream.Score).

Parameters fhandle (str or file-like) — path to score

Returns music21.stream.Score — score in music21 format

2.5.29 idmt_smt_audio effects

IDMT-SMT-Audio-Effects Dataset Loader

Dataset Info

IDMT-SMT-Audio-Effects is a large database for automatic detection of audio effects in recordings of electric guitar
and bass and related signal processing. The overall duration of the audio material is approx. 30 hours.

The dataset consists of 55044 WAV files (44.1 kHz, 16bit, mono) with single recorded notes:

20592 monophonic bass notes 20592 monophonic guitar notes 13860 polyphonic guitar sounds Overall, 11 differ-
ent audio effects are incorporated: feedback delay, slapback delay, reverb, chorus, flanger, phaser, tremolo, vibrato,
distortion, overdrive, no effect (unprocessed notes/sounds)

2 different electric guitars and 2 different electric bass guitars, each with two different pick-up settings and up to three
different plucking styles (finger plucked - hard, finger plucked - soft, picked) were used for recording. The notes cover
the common pitch range of a 4-string bass guitar from E1 (41.2 Hz) to G3 (196.0 Hz) or the common pitch range of
a 6-string electric guitar from E2 (82.4 Hz) to E5 (659.3 Hz). Effects processing was performed using a digital audio
workstation and a variety of mostly freely available effect plugins.

To organize the database, lists in XML format are used, which record all relevant information and are provided with
the database as well as a summary of the used effect plugins and parameter settings.

In addition, most of this information is also encoded in the first part of the file name of the audio files using a sim-
ple alpha-numeric encoding scheme. The second part of the file name contains unique identification numbers. This
provides an option for fast and flexible structuring of the data for various purposes.

DOI 10.5281/zenodo.7544032

156 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

class mirdata.datasets.idmt_smt_audio_effects.Dataset (data_home=None, version='default")
The IDMT-SMT-Audio Effect dataset.

Parameters
» data_home (str) — Directory where the dataset is located or will be downloaded.
« version (str) — Dataset version. Default is “default”.
Variables
e name (str)— Name of the dataset.
» track_class (Type[core.Track]) — Track type.
e bibtex (str or None) - BibTeX citation.
e indexes (dict or None)— Available versions.
* remotes (dict or None)— Data to be downloaded.
» download_info (str) — Instructions for downloading the dataset.
e license_info (str) — Dataset license.
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
* name — the identifier of the dataset
» bibtex — dataset citation/s in bibtex format
* indexes -
» remotes — data to be downloaded
e readme (str) — information about the dataset
* track (function) — a function mapping a track_id to a mirdata.core.Track
* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (list or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

2.5. Dataset Loaders 157

mirdata, Release 0.3.8

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
e I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

158 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.idmt_smt_audio_effects.Track(track_id, data_home, dataset_name, index,
metadata)
IDMT-SMT-Audio-Effects track class.

Parameters
¢ track_id (str) — track id of the track.
» data_home (str) — Local path where the dataset is stored.
* dataset_name (str) — Name of the dataset.
* index (Dict) — Index dictionary.
* metadata (Dict) — Metadata dictionary.
Variables
* audio_path (str) — path to audio file.
e instrument (str) — instrument used to record the track.
e midi_nr (int) — midi number of the note.
» fx_group (int) — effect group number.
» fx_type (int) — effect type number.
o fx_setting (int) — effect setting number.

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns

2.5. Dataset Loaders 159

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.idmt_smt_audio_effects.load_audio(fhandle: BinarylO) — Tuple[numpy.ndarray,
float]
Load a IDMT-SMT-Audio Effect track.

Parameters fhandle (Union/str, BinarylO]) — Path to audio file or file-like object.
Returns
* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

2.5.30 ikala

iKala Dataset Loader

Dataset Info

The iKala dataset is comprised of 252 30-second excerpts sampled from 206 iKala songs (plus 100 hidden excerpts
reserved for MIREX). The music accompaniment and the singing voice are recorded at the left and right channels re-
spectively and can be found under the Wavfile directory. In addition, the human-labeled pitch contours and timestamped
lyrics can be found under PitchLabel and Lyrics respectively.

For more details, please visit: http://mac.citi.sinica.edu.tw/ikala/

class mirdata.datasets.ikala.Dataset (data_home=None, version="default")
The ikala dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset

e bibtex (str or None) — dataset citation/s in bibtex format

indexes (dict or None)—

remotes (dict or None)— data to be downloaded
e readme (str) — information about the dataset

* track (function) — a function mapping a track_id to a mirdata.core.Track

multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

160 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
http://mac.citi.sinica.edu.tw/ikala/

mirdata, Release 0.3.8

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

» partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

« allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
e I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary

Returns dict — a dictionary containing the elements in each split

. Dataset Loaders 161

mirdata, Release 0.3.8

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_£0(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.ikala.load_f0

load_instrumental_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.ikala.load_instrumental_audio

load_lyrics(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.ikala.load_lyrics

load_mix_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.ikala.load_mix_audio

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_notes(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.ikala.load_notes

load_pronunciations(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.ikala.load_pronunciations

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

load_vocal_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.ikala.load_vocal_audio

mtrack_ids
Return track ids

162 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Returns list — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.ikala.Track(track_id, data_home, dataset_name, index, metadata)
ikala Track class

Parameters track_id (str) — track id of the track
Variables
* audio_path (str) — path to the track’s audio file
» f0_path (str) — path to the track’s fO annotation file
* notes_pyin_path (str) — path to the note annotation file
* lyrics_path (str) — path to the track’s lyric annotation file
e section (str) — section. Either ‘verse’ or ‘chorus’
» singer_id (str) - singer id
* song_id (str) — song id of the track
e track_id (str) - track id
Other Parameters
* f0 (FOData) — human-annotated singing voice pitch
* notes_pyin (NoteData) — notes estimated by the pyin algorithm
e lyrics (LyricsData) — human-annotated lyrics
* pronunciations (LyricsData) — human-annotation lyric pronunciations

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

property instrumental_audio: Optional[Tuple[numpy.ndarray, float]]
instrumental audio (mono)

Returns
* np.ndarray - audio signal
* float - sample rate

property mix_audio: Optional[Tuple[numpy.ndarray, float]]
mixture audio (mono)

2.5. Dataset Loaders 163

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

Returns
 np.ndarray - audio signal
* float - sample rate

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

property vocal_audio: Optional[Tuple[numpy.ndarray, float]]
solo vocal audio (mono)

Returns
 np.ndarray - audio signal
* float - sample rate

mirdata.datasets.ikala.load_£0 (fhandle: TextlO) — mirdata.annotations.FOData
Load an ikala fO annotation

Parameters fhandle (str or file-like) — File-like object or path to fO annotation file
Raises IOError - If fO_path does not exist
Returns FOData — the fO annotation data

mirdata.datasets.ikala.load_instrumental_audio (fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load ikala instrumental audio

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

* np.ndarray - audio signal

* float - sample rate

mirdata.datasets.ikala.load_lyrics (fhandle: TextlO) — mirdata.annotations.LyricData
Load an ikala lyrics annotation

Parameters fhandle (str or file-like) — File-like object or path to lyric annotation file
Raises IOError — if lyrics_path does not exist
Returns LyricData — lyric annotation data

mirdata.datasets.ikala.load_mix_audio (fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load an ikala mix.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

* np.ndarray - audio signal

* float - sample rate

mirdata.datasets.ikala.load_notes (fhandle: TextIO) — Optional[mirdata.annotations.NoteData)
load a note annotation file

Parameters fhandle (str or file-like) — str or file-like to note annotation file
Raises IOError — if file doesn’t exist

Returns NoteData — note annotation

164 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

mirdata.datasets.ikala.load_pronunciations (fhandle: TextIO) — mirdata.annotations.LyricData
Load an ikala pronunciation annotation

Parameters fhandle (str or file-like) — File-like object or path to lyric annotation file
Raises IOError - if lyrics_path does not exist
Returns LyricData — pronunciation annotation data

mirdata.datasets.ikala.load_vocal_audio (fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load ikala vocal audio

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns
* np.ndarray - audio signal

* float - sample rate

2.5.31 irmas

IRMAS Loader

Dataset Info
IRMAS: a dataset for instrument recognition in musical audio signals

This dataset includes musical audio excerpts with annotations of the predominant instrument(s) present. It was used
for the evaluation in the following article:

Bosch, J. J., Janer, J., Fuhrmann, F., & Herrera, P. “A Comparison of Sound Segregation..
—Techniques for

Predominant Instrument Recognition in Musical Audio Signals”, in Proc. ISMIR (pp. 559-
-564), 2012.

IRMAS is intended to be used for training and testing methods for the automatic recognition of predominant instruments
in musical audio. The instruments considered are: cello, clarinet, flute, acoustic guitar, electric guitar, organ, piano,
saxophone, trumpet, violin, and human singing voice. This dataset is derived from the one compiled by Ferdinand
Fuhrmann in his PhD thesis, with the difference that we provide audio data in stereo format, the annotations in the
testing dataset are limited to specific pitched instruments, and there is a different amount and lenght of excerpts from
the original dataset.

The dataset is split into training and test data.
Training data
Total audio samples: 6705 They are excerpts of 3 seconds from more than 2000 distinct recordings.
Audio specifications
» Sampling frequency: 44.1 kHz
* Bit-depth: 16 bit
* Audio format: .wav
IRMAS Dataset trainig samples are annotated by storing the information of each track in their filenames.

¢ Predominant instrument:

2.5. Dataset Loaders 165

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

— The annotation of the predominant instrument of each excerpt is both in the name of the containing folder,
and in the file name: cello (cel), clarinet (cla), flute (flu), acoustic guitar (gac), electric guitar (gel), organ
(org), piano (pia), saxophone (sax), trumpet (tru), violin (vio), and human singing voice (voi).

— The number of files per instrument are: cel(388), cla(505), flu(451), gac(637), gel(760), org(682), pia(721),
sax(626), tru(577), vio(580), voi(778).

¢ Drum presence

— Additionally, some of the files have annotation in the filename regarding the presence ([dru]) or non pres-
ence([nod]) of drums.

* The annotation of the musical genre:

country-folk ([cou_fol])

classical ([cla]),

pop-rock ([pop_roc])

latin-soul ([lat_sou])

jazz-blues ([jaz_blu]).
Testing data
Total audio samples: 2874
Audio specifications
» Sampling frequency: 44.1 kHz
¢ Bit-depth: 16 bit
* Audio format: .wav
IRMAS Dataset testing samples are annotated by the following basis:
* Predominant instrument:

The annotations for an excerpt named: “excerptName.wav” are given in “excerptName.txt”. More
than one instrument may be annotated in each excerpt, one label per line. This part of the dataset
contains excerpts from a diversity of western musical genres, with varied instrumentations, and it is
derived from the original testing dataset from Fuhrmann (http://www.dtic.upf.edu/~ffuhrmann/PhD/).
Instrument nomenclatures are the same as the training dataset.

Dataset compiled by Juan J. Bosch, Ferdinand Fuhrmann, Perfecto Herrera, Music Technology Group - Universitat
Pompeu Fabra (Barcelona).

The IRMAS dataset is offered free of charge for non-commercial use only. You can not redistribute it nor modify it.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

For more details, please visit: https://www.upf.edu/web/mtg/irmas

class mirdata.datasets.irmas.Dataset (data_home=None, version="default")
The irmas dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset

e bibtex (str or None) — dataset citation/s in bibtex format

166 Chapter 2. Contributing to mirdata

http://www.dtic.upf.edu/~ffuhrmann/PhD/
https://www.upf.edu/web/mtg/irmas

mirdata, Release 0.3.8

e indexes (dict or None)—

remotes (dict or None) - data to be downloaded

e readme (str) — information about the dataset

» track (function) — a function mapping a track_id to a mirdata.core.Track

e multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
* ValueError - if invalid keys are passed to partial_download
e TOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

2.5.

Dataset Loaders 167

mirdata, Release 0.3.8

seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

split_names (/ist) — list of keys to use in the output dictionary

Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

split_names (/ist) — list of keys to use in the output dictionary

Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

AttributeError — If this dataset does not have tracks

NotImplementedError — If this dataset does not have predetermined splits

Returns dict — splits, keyed by split name and with values of lists of track_ids

license()

Print the license

load_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.irmas.load_audio

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}

Raises NotImplementedError — If the dataset does not support Multitracks

load_pred_inst (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.irmas.load_pred_inst

load_tracks()

Load all tracks in the dataset

Returns dict — {track_id: track data}

Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids

Return track ids

Returns list — A list of track ids

track_ids

Return track ids

Returns /ist — A list of track ids

168

Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.irmas.Track(track_id, data_home, dataset_name, index, metadata)
IRMAS track class

Parameters
e track_id (str) — track id of the track

» data_home (str) — Local path where the dataset is stored. If None, looks for the data in the
default directory, ~/mir_datasets/Mridangam-Stroke

Variables
e track_id (str) - track id
» predominant_instrument (1ist)— Training tracks predominant instrument
* train (bool) - flag to identify if the track is from the training of the testing dataset

* genre (str) — string containing the namecode of the genre of the track.

drum (bool) — flag to identify if the track contains drums or not.
» split (str) — data split (“train” or “test”)
Other Parameters instrument (/ist) — list of predominant instruments as str

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio signal

Returns
* np.ndarray - the mono audio signal
* float - The sample rate of the audio file

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
the track’s data in jams format

Returns jams.JAMS — return track data in jam format

mirdata.datasets.irmas.load_audio (fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a IRMAS dataset audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns
* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

2.5. Dataset Loaders 169

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

mirdata.datasets.irmas.load_pred_inst (fhandle: TextIO) — List[str]
Load predominant instrument of track

Parameters fhandle (str or file-like) — File-like object or path where the test annotations are stored.

Returns list(str) — test track predominant instrument(s) annotations

2.5.32 mtg_jamendo_autotagging_moodtheme

MTG jamendo autotagging moodtheme Dataset Loader

Dataset Info

The MTG Jamendo autotagging mood/theme Dataset is a new open dataset for music auto-tagging. It is built using
music available at Jamendo under Creative Commons licenses and tags provided by content uploaders. The dataset
contains 18,486 full audio tracks with 195 tags from mood/theme. It is provided five fixed data splits for a better and
fair replication. For more information please visit: https://github.com/MTG/mtg-jamendo-dataset .

The moodtheme tags are:

action, adventure, advertising, ambiental, background, ballad, calm, children, christmas, commercial, cool, corporate,
dark, deep, documentary, drama, dramatic, dream, emotional, energetic, epic, fast, film, fun, funny, game, groovy,
happy, heavy, holiday, hopeful, horror, inspiring, love, meditative, melancholic, mellow, melodic, motivational, movie,
nature, party, positive, powerful, relaxing, retro, romantic, sad, sexy, slow, soft, soundscape, space, sport, summer,
trailer, travel, upbeat, uplifting.

Emotion and theme recognition is a popular task in music information retrieval that is relevant for music search and
recommendation systems.

This task involves the prediction of moods and themes conveyed by a music track, given the raw audio. The examples
of moods and themes are: happy, dark, epic, melodic, love, film, space etc. The full list is available at: https://github.
com/mir-dataset-loaders/mirdata/pull/505 Each track is tagged with at least one tag that serves as a ground-truth.

Acknowledgments

This work was funded by the predoctoral grant MDM-2015-0502-17-2 from the Spanish Ministry of Economy and
Competitiveness linked to the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502).

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Sklodowska-Curie grant agreement No. 765068 “MIP-Frontiers”.

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 688382 “AudioCommons”.

class mirdata.datasets.mtg_jamendo_autotagging moodtheme.Dataset (data_home=None,
version="default")
The MTG jamendo autotagging moodtheme dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
e bibtex (str or None) — dataset citation/s in bibtex format

e indexes (dict or None)—

remotes (dict or None) — data to be downloaded

170 Chapter 2. Contributing to mirdata

https://github.com/MTG/mtg-jamendo-dataset
https://github.com/mir-dataset-loaders/mirdata/pull/505
https://github.com/mir-dataset-loaders/mirdata/pull/505

mirdata, Release 0.3.8

e readme (str) — information about the dataset
* track (function) - a function mapping a track_id to a mirdata.core.Track
* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
* I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

. Dataset Loaders 171

mirdata, Release 0.3.8

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_ids_for_split(split_number)
Load a MTG jamendo autotagging moodtheme pre-defined split. There are five different
train/validation/tests splits. :Parameters: split_number (int) — split to be retrieved from O to 4

Returns ** dict* — {“train™: [...], “validation™: [...], “test”: [...]} - the train split

Deprecated since version 0.3.6: Use mirdata.datasets.mtg_jamendo_autotagging_moodtheme.get_track
_splits

get_track_splits(split_number=0)
Get predetermined track splits released alongside this dataset

Parameters split_number (int) — which split split_number to use (0, 1, 2, 3 or 4)
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.mtg_jamendo_autotagging_moodtheme.load_audio

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

172 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Parameters verbose (bool) — If False, don’t print output
Returns

e list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.mtg_jamendo_autotagging_moodtheme.Track (track_id, data_home,
dataset_name, index, metadata)
MTG jamendo autotagging moodtheme Track class

Parameters track_id (str) — track id of the track (JAMENDO track id)
Variables audio_path (str) — Path to the audio file
Other Parameters

o artist_id (str) — JAMENDO artist id

e album_id (str) - JAMENDO album id

* duration (floar) — track duration

* tags (str) — autotagging moodtheme annotations

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

mirdata.datasets.mtg_jamendo_autotagging_moodtheme.load_audio (fhandle: BinarylO) —
Tuple[numpy.ndarray, float]
Load a MTG jamendo autotagging moodtheme audio file.

Parameters fhandle (str or file-like) — path or file-like object pointing to an audio file
Returns
* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

2.5.33 maestro

MAESTRO Dataset Loader

Dataset Info

MAESTRO (MIDI and Audio Edited for Synchronous TRacks and Organization) is a dataset composed of over 200
hours of virtuosic piano performances captured with fine alignment (~3 ms) between note labels and audio waveforms.

The dataset is created and released by Google’s Magenta team.

2.5. Dataset Loaders 173

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

The dataset contains over 200 hours of paired audio and MIDI recordings from ten years of International Piano-e-
Competition. The MIDI data includes key strike velocities and sustain/sostenuto/una corda pedal positions. Audio and
MIDI files are aligned with 3 ms accuracy and sliced to individual musical pieces, which are annotated with composer,
title, and year of performance. Uncompressed audio is of CD quality or higher (44.1-48 kHz 16-bit PCM stereo).

A train/validation/test split configuration is also proposed, so that the same composition, even if performed by multiple
contestants, does not appear in multiple subsets. Repertoire is mostly classical, including composers from the 17th to
early 20th century.

The dataset is made available by Google LLC under a Creative Commons Attribution Non-Commercial Share-Alike
4.0 (CC BY-NC-SA 4.0) license.

This loader supports MAESTRO version 2.

For more details, please visit: https://magenta.tensorflow.org/datasets/maestro

class mirdata.datasets.maestro.Dataset (data_home=None, version="default")
The maestro dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
* bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None) -
e remotes (dict or None) — data to be downloaded
* readme (str) — information about the dataset
* track (function) — a function mapping a track_id to a mirdata.core.Track
* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False)
Download the dataset

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.

174 Chapter 2. Contributing to mirdata

https://magenta.tensorflow.org/datasets/maestro

mirdata, Release 0.3.8

* cleanup (bool) — Whether to delete any zip/tar files after extracting.
Raises

¢ ValueError - if invalid keys are passed to partial_download

e I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (list) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.maestro.load_audio

load_midi (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.io.load_midi

2.5.

Dataset Loaders 175

mirdata, Release 0.3.8

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_notes(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.io.load_notes_from_midi

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.maestro.Track(track_id, data_home, dataset_name, index, metadata)
MAESTRO Track class

Parameters track_id (str) — track id of the track
Variables
e audio_path (str) — Path to the track’s audio file

» canonical_composer (str)— Composer of the piece, standardized on a single spelling for
a given name.

e canonical_title (str) - Title of the piece. Not guaranteed to be standardized to a single
representation.

duration (float) — Duration in seconds, based on the MIDI file.

midi_path (str) — Path to the track’s MIDI file

split (str) — Suggested train/validation/test split.

track_id (str) —track id

year (int) — Year of performance.

Cached Property: midi (pretty_midi.PrettyMIDI): object containing MIDI annotations notes (NoteData): an-
notated piano notes

176 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters Kkey (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.maestro.load_audio(fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a MAESTRO audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns
* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

2.5.34 medley_solos_db

Medley-solos-DB Dataset Loader.

Dataset Info

Medley-solos-DB is a cross-collection dataset for automatic musical instrument recognition in solo recordings. It
consists of a training set of 3-second audio clips, which are extracted from the MedleyDB dataset (Bittner et al., ISMIR
2014) as well as a test set of 3-second clips, which are extracted from the solosDB dataset (Essid et al., IEEE TASLP
2009).

Each of these clips contains a single instrument among a taxonomy of eight:
0. clarinet,
1. distorted electric guitar,
. female singer,

. flute,

2

3

4. piano,
5. tenor saxophone,
6. trumpet, and

7. violin.

The Medley-solos-DB dataset is the dataset that is used in the benchmarks of musical instrument recognition in the
publications of Lostanlen and Cella (ISMIR 2016) and Andén et al. (IEEE TSP 2019).

2.5. Dataset Loaders 177

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

class mirdata.datasets.medley_solos_db.Dataset (data_home=None, version="default")

The medley_solos_db dataset
Variables

» data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
* bibtex (str or None)— dataset citation/s in bibtex format
e indexes (dict or None)—
e remotes (dict or None) - data to be downloaded
e readme (str) — information about the dataset

» track (function) — a function mapping a track_id to a mirdata.core.Track

multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=Fualse)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
e ValueError - if invalid keys are passed to partial_download
* IOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

178

Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

e AttributeError - If this dataset does not have multitracks
¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.medley_solos_db.load_audio

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}

Raises NotImplementedError — If the dataset does not support Tracks

2.5.

Dataset Loaders 179

mirdata, Release 0.3.8

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate(verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

e list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.medley_solos_db.Track(track_id, data_home, dataset_name, index, metadata)
medley_solos_db Track class

Parameters track_id (str) — track id of the track
Variables
* audio_path (str) — path to the track’s audio file
e instrument (str) — instrument encoded by its English name
e instrument_id (int) — instrument encoded as an integer
» song_id (int) — song encoded as an integer
* subset (str) — either equal to ‘train’, ‘validation’, or ‘test’
e track_id (str) - track id

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
¢ float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.medley_solos_db.load_audio(fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a Medley Solos DB audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

* np.ndarray - the mono audio signal

180 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

* float - The sample rate of the audio file

2.5.35 medleydb_melody

MedleyDB melody Dataset Loader

Dataset Info
MedleyDB melody is a subset of the MedleyDB dataset containing only the mixtures and melody annotations.

MedleyDB is a dataset of annotated, royalty-free multitrack recordings. MedleyDB was curated primarily to support
research on melody extraction, addressing important shortcomings of existing collections. For each song we provide
melody fO annotations as well as instrument activations for evaluating automatic instrument recognition.

For more details, please visit: https://medleydb.weebly.com

class mirdata.datasets.medleydb_melody.Dataset (data_home=None, version="default")
The medleydb_melody dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset

* bibtex (str or None) — dataset citation/s in bibtex format

indexes (dict or None)-—

remotes (dict or None) - data to be downloaded

e readme (str) — information about the dataset

* track (function) - a function mapping a track_id to a mirdata.core.Track

* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

2.5. Dataset Loaders 181

https://medleydb.weebly.com

mirdata, Release 0.3.8

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
e I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

182 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.medleydb_melody.load_audio

load_melody (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.medleydb_melody.load_melody

load_melody3 (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.medleydb_melody.load_melody3

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError — If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.medleydb_melody.Track(track_id, data_home, dataset_name, index, metadata)
medleydb_melody Track class

Parameters track_id (str) — track id of the track
Variables
e artist (str) — artist
» audio_path (str) — path to the audio file
* genre (str) — genre
* is_excerpt (bool) — True if the track is an excerpt
e is_instrumental (bool) — True of the track does not contain vocals
» melodyl_path (str) — path to the melody1 annotation file
* melody2_path (str) — path to the melody2 annotation file
* melody3_path (str) — path to the melody3 annotation file

e n_sources (int) — Number of instruments in the track

2.5. Dataset Loaders 183

mirdata, Release 0.3.8

e title (str) —title
e track_id (str) — track id
Other Parameters
* melodyl (FOData) — the pitch of the single most predominant source (often the voice)
* melody2 (FOData) — the pitch of the predominant source for each point in time

* melody3 (MultiFOData) — the pitch of any melodic source. Allows for more than one fO
value at a time

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.medleydb_melody.load_audio(fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a MedleyDB audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.medleydb_melody.load_melody (fhandle: TextlO) — mirdata.annotations.FOData
Load a MedleyDB melody1 or melody2 annotation file

Parameters fhandle (str or file-like) — File-like object or path to a melody annotation file
Raises IOError — if melody_path does not exist
Returns FOData — melody data

mirdata.datasets.medleydb_melody.load_melody3 (fhandle: TextlO) — mirdata.annotations.MultiFOData
Load a MedleyDB melody3 annotation file

Parameters fhandle (str or file-like) — File-like object or melody 3 melody annotation path
Raises IOError — if melody_path does not exist

Returns MultiFOData — melody 3 annotation data

184 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

2.5.36 medleydb_pitch

MedleyDB pitch Dataset Loader

Dataset Info
MedleyDB Pitch is a pitch-tracking subset of the MedleyDB dataset containing only fO-annotated, monophonic stems.

MedleyDB is a dataset of annotated, royalty-free multitrack recordings. MedleyDB was curated primarily to support
research on melody extraction, addressing important shortcomings of existing collections. For each song we provide
melody fO annotations as well as instrument activations for evaluating automatic instrument recognition.

For more details, please visit: https://medleydb.weebly.com

class mirdata.datasets.medleydb_pitch.Dataset (data_home=None, version="'default")
The medleydb_pitch dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
* bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None)—
e remotes (dict or None) — data to be downloaded
e readme (str) — information about the dataset
* track (function) - a function mapping a track_id to a mirdata.core.Track
* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite(Q)
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.

2.5. Dataset Loaders 185

https://medleydb.weebly.com

mirdata, Release 0.3.8

* cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
* I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

186 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.medleydb_pitch.load_audio

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_notes(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.medleydb_pitch.load_notes

load_pitch(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.medleydb_pitch.load_pitch

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.medleydb_pitch.Track(track_id, data_home, dataset_name, index, metadata)
medleydb_pitch Track class

Parameters track_id (str) — track id of the track
Variables
e artist (str) — artist
» audio_path (str) — path to the audio file
* genre (str) — genre
e instrument (str) — instrument of the track
* notes_pyin_path (str) — path to the pyin note annotation file
» pitch_path (str) — path to the pitch annotation file
e title (str) —title
e track_id (str) - track id

Other Parameters

2.5. Dataset Loaders 187

mirdata, Release 0.3.8

* pitch (FOData) — human annotated pitch
* notes_pyin (NoteData) — notes estimated by the pyin algorithm. Not available in version 2.0

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
 np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.medleydb_pitch.load_audio (fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a MedleyDB audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

 np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.medleydb_pitch.load_notes(fhandle: TextIO) —
Optional[mirdata.annotations.NoteData]
load a note annotation file

Parameters fhandle (str or file-like) — str or file-like to note annotation file
Raises IOError - if file doesn’t exist
Returns NoteData — note annotation

mirdata.datasets.medleydb_pitch.load_pitch(fhandle: TextIO) — mirdata.annotations.FOData
load a MedleyDB pitch annotation file

Parameters fhandle (str or file-like) — str or file-like to pitch annotation file
Raises IOError - if the path doesn’t exist

Returns FOData — pitch annotation

188 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

2.5.37 mridangam_stroke

Mridangam Stroke Dataset Loader

Dataset Info

The Mridangam Stroke dataset is a collection of individual strokes of the Mridangam in various tonics. The dataset com-
prises of 10 different strokes played on Mridangams with 6 different tonic values. The audio examples were recorded
from a professional Carnatic percussionist in a semi-anechoic studio conditions by Akshay Anantapadmanabhan.

Total audio samples: 6977
Used microphones:
* SM-58 microphones
* H4n ZOOM recorder.
Audio specifications:
» Sampling frequency: 44.1 kHz
* Bit-depth: 16 bit
* Audio format: .wav

The dataset can be used for training models for each Mridangam stroke. The presentation of the dataset took place on
the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2013) on May 2013. You
can read the full publication here: https://repositori.upf.edu/handle/10230/25756

Mridangam Dataset is annotated by storing the informat of each track in their filenames. The structure of the filename
is:

<TrackID>__<AuthorName>__<StrokeName>-<Tonic>-<InstanceNum>.wav

The dataset is made available by CompMusic under a Creative Commons Attribution 3.0 Unported (CC BY 3.0) Li-
cense.

For more details, please visit: https://compmusic.upf.edu/mridangam-stroke-dataset

class mirdata.datasets.mridangam_stroke.Dataset (data_home=None, version="default")
The mridangam_stroke dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
* name (str) — the identifier of the dataset
* bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None)—
e remotes (dict or None) — data to be downloaded
e readme (str) — information about the dataset
* track (function) — a function mapping a track_id to a mirdata.core.Track
* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

2.5. Dataset Loaders 189

https://repositori.upf.edu/handle/10230/25756
https://compmusic.upf.edu/mridangam-stroke-dataset

mirdata, Release 0.3.8

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns szr — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

« allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
* ValueError - if invalid keys are passed to partial_download
e TOError — if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

* AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

190 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

split_names (/ist) — list of keys to use in the output dictionary

Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

AttributeError — If this dataset does not have tracks

NotImplementedError — If this dataset does not have predetermined splits

Returns dict — splits, keyed by split name and with values of lists of track_ids

license()

Print the license

load_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.mridangam_stroke.load_audio

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}

Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()

Load all tracks in the dataset

Returns dict — {track_id: track data}

Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids

Return track ids

Returns /ist — A list of track ids

track_ids

Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output

Returns

list - files in the index but are missing locally

list - files which have an invalid checksum

class mirdata.datasets.mridangam_stroke.Track(track_id, data_home, dataset_name, index, metadata)

Mridangam Stroke track class

Parameters

e track_id (str) — track id of the track

2.5. Dataset Loaders 191

mirdata, Release 0.3.8

» data_home (str) — Local path where the dataset is stored.
Variables
e track_id (str) - track id
* audio_path (str) — audio path
» stroke_name (str) — name of the Mridangam stroke present in Track
e tonic (str) — tonic of the stroke in the Track

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
¢ float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.mridangam_stroke.load_audio (fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a Mridangam Stroke Dataset audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns
* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

2.5.38 orchset

ORCHSET Dataset Loader

Dataset Info

Orchset is intended to be used as a dataset for the development and evaluation of melody extraction algorithms. This
collection contains 64 audio excerpts focused on symphonic music with their corresponding annotation of the melody.

For more details, please visit: https://zenodo.org/record/1289786#.XREpzaeZPx6

class mirdata.datasets.orchset.Dataset (data_home=None, version='default")
The orchset dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —

e name (str) — the identifier of the dataset

192 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://zenodo.org/record/1289786#.XREpzaeZPx6

mirdata, Release 0.3.8

e bibtex (str or None) — dataset citation/s in bibtex format

e indexes (dict or None)—

remotes (dict or None)— data to be downloaded

e readme (str) — information about the dataset

track (function) — a function mapping a track_id to a mirdata.core.Track

multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=Fualse, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
» TOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError — If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

2.5.

Dataset Loaders 193

mirdata, Release 0.3.8

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio_mono (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.orchset.load_audio_mono

load_audio_stereo (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.orchset.load_audio_stereo

load_melody (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.orchset.load_melody

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

194 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.orchset.Track(track_id, data_home, dataset_name, index, metadata)
orchset Track class

Parameters track_id (str) — track id of the track

Variables
* alternating_melody (bool) — True if the melody alternates between instruments
* audio_path_mono (str) — path to the mono audio file

* audio_path_stereo (str) — path to the stereo audio file

composer (str) — the work’s composer

contains_brass (bool) — True if the track contains any brass instrument
» contains_strings (bool) — True if the track contains any string instrument

» contains_winds (bool) — True if the track contains any wind instrument

excerpt (str) — True if the track is an excerpt

melody_path (str) — path to the melody annotation file
» only_brass (bool) — True if the track contains brass instruments only

* only_strings (bool) — True if the track contains string instruments only

only_winds (bool) — True if the track contains wind instruments only
» predominant_melodic_instruments (1ist)- Listof instruments which play the melody
e track_id (str) — track id
e work (str) — The musical work

Other Parameters melody (FOData) — melody annotation

property audio_mono: Optional[Tuple[numpy.ndarray, float]]
the track’s audio (mono)

Returns
* np.ndarray - the mono audio signal
¢ float - The sample rate of the audio file

property audio_stereo: Optional[Tuple[numpy.ndarray, float]]
the track’s audio (stereo)

Returns

* np.ndarray - the mono audio signal

2.5. Dataset Loaders 195

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

* float - The sample rate of the audio file

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.orchset.load_audio_mono (fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load an Orchset audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.orchset.load_audio_stereo (fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load an Orchset audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

* np.ndarray - the stereo audio signal

* float - The sample rate of the audio file

mirdata.datasets.orchset.load_melody (fhandle: TextIO) — mirdata.annotations.FOData
Load an Orchset melody annotation file

Parameters fhandle (str or file-like) — File-like object or path to melody annotation file
Raises IOError — if melody_path doesn’t exist

Returns FOData — melody annotation data

2.5.39 phenicx_anechoic

PHENICX-Anechoic Dataset Loader

Dataset Info

This dataset includes audio and annotations useful for tasks as score-informed source separation, score following, multi-
pitch estimation, transcription or instrument detection, in the context of symphonic music: M. Miron, J. Carabias-Orti,
J.J. Bosch, E. Gémez and J. Janer, “Score-informed source separation for multi-channel orchestral recordings”, Journal
of Electrical and Computer Engineering (2016))”

We do not provide the original audio files, which can be found at the web page hosted by Aalto University. However,
with their permission we distribute the denoised versions for some of the anechoic orchestral recordings. The original
dataset was introduced in: Pétynen, J., Pulkki, V., and Lokki, T., “Anechoic recording system for symphony orchestra,”
Acta Acustica united with Acustica, vol. 94, nr. 6, pp. 856-865, November/December 2008.

Additionally, we provide the associated musical note onset and offset annotations, and the Roomsim configuration files
used to generate the multi-microphone recordings.

196 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

The original anechoic dataset in Péatynen et al. consists of four passages of symphonic music from the Classical and
Romantic periods. This work presented a set of anechoic recordings for each of the instruments, which were then
synchronized between them so that they could later be combined to a mix of the orchestra. In order to keep the evaluation
setup consistent between the four pieces, we selected the following instruments: violin, viola, cello, double bass, oboe,
flute, clarinet, horn, trumpet and bassoon. A list of the characteristics of the four pieces can be found below:

Mozart - duration: 3min 47s - period: classical - no. sources: 8 - total no. instruments: 10 - max. instruments/source:
2

Beethoven - duration: 3min 11s - period: classical - no. sources: 10 - total no. instruments: 20 - max. instru-
ments/source: 4

Beethoven - duration: 2min 12s - period: romantic - no. sources: 10 - total no. instruments: 30 - max. instru-
ments/source: 4

Bruckner - duration: 1min 27s - period: romantic - no. sources: 10 - total no. instruments: 39 - max. instru-
ments/source: 12

For more details, please visit: https://www.upf.edu/web/mtg/phenicx-anechoic

class mirdata.datasets.phenicx_anechoic.Dataset (data_home=None, version='default")
The Phenicx-Anechoic dataset

Variables

* data_home (str) — path where mirdata will look for the dataset

version (str) —
e name (str) — the identifier of the dataset

e bibtex (str or None) — dataset citation/s in bibtex format

indexes (dict or None)—

remotes (dict or None)— data to be downloaded

e readme (str) — information about the dataset

* track (function) — a function mapping a track_id to a mirdata.core.Track

e multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns szr — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

2.5. Dataset Loaders 197

https://www.upf.edu/web/mtg/phenicx-anechoic

mirdata, Release 0.3.8

« partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
* ValueError - if invalid keys are passed to partial_download
» TOError — if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

» AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises
e AttributeError — If this dataset does not have tracks
e NotImplementedError — If this dataset does not have predetermined splits

Returns dict — splits, keyed by split name and with values of lists of track_ids

198 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

license()
Print the license

load_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.phenicx_anechoic.load_audio

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_score(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.phenicx_anechoic.load_score

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.phenicx_anechoic.MultiTrack (mtrack_id, data_home, dataset_name, index,
track_class, metadata)
Phenicx-Anechoic MultiTrack class

Parameters
* mtrack_id (str) — track id of the track

» data_home (str) — Local path where the dataset is stored. If None, looks for the data in the
default directory, ~/mir_datasets/Phenicx-Anechoic

Variables
* track_audio_property (str) — the attribute of track which is used for mixing
e mtrack_id (str) — multitrack id
* piece (str) - the classical music piece associated with this multitrack
* tracks (dict) —dict of track ids and the corresponding Tracks
* instruments (dict) — dict of instruments and the corresponding track

» sections (dict) — dict of sections and the corresponding list of tracks for each section

2.5. Dataset Loaders

199

mirdata, Release 0.3.8

get_audio_for_instrument (instrument)
Get the audio for a particular instrument

Parameters instrument (szr) — the instrument to get audio for

Returns np.ndarray — instrument audio with shape (n_samples, n_channels)

get_audio_for_section(section)
Get the audio for a particular section

Parameters section (str) — the section to get audio for

Returns np.ndarray — section audio with shape (n_samples, n_channels)

get_mix(Q)
Create a linear mixture given a subset of tracks.

Parameters track_keys (/ist) — list of track keys to mix together
Returns np.ndarray — mixture audio with shape (n_samples, n_channels)

get_notes_for_instrument (instrument, notes_property='notes")
Get the notes for a particular instrument

Parameters

¢ instrument (str) — the instrument to get the notes for

* notes_property (str) — the attribute associated with NoteData, notes or notes_original
Returns NoteData — Note data for the instrument

get_notes_for_section(section, notes_property="notes")
Get the notes for a particular section

Parameters

* section (str) — the section to get the notes for

* notes_property (str) — the attribute associated with NoteData, notes or notes_original
Returns NoteData — Note data for the section

get_notes_target (track_keys, notes_property="notes")
Get the notes for all the tracks

Parameters

* track_keys (/ist) — list of track keys to get the NoteData for

* notes_property (str) — the attribute associated with NoteData, notes or notes_original
Returns NoteData — Note data for the tracks

get_path(key)
Get absolute path to multitrack audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

get_random_target (n_tracks=None, min_weight=0.3, max_weight=1.0)
Get a random target by combining a random selection of tracks with random weights

Parameters
* n_tracks (int or None) — number of tracks to randomly mix. If None, uses all tracks

* min_weight (float) — minimum possible weight when mixing

200 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* max_weight (float) — maximum possible weight when mixing
Returns

* np.ndarray - mixture audio with shape (n_samples, n_channels)

e list - list of keys of included tracks

e list - list of weights used to mix tracks

get_target (track_keys, weights=None, average=True, enforce_length=True)
Get target which is a linear mixture of tracks

Parameters
o track_keys (list) — list of track keys to mix together
» weights (list or None) — list of positive scalars to be used in the average

* average (bool) — if True, computes a weighted average of the tracks if False, computes a
weighted sum of the tracks

* enforce_length (bool) — If True, raises ValueError if the tracks are not the same length. If
False, pads audio with zeros to match the length of the longest track

Returns np.ndarray — target audio with shape (n_channels, n_samples)

Raises ValueError - if sample rates of the tracks are not equal if enforce_length=True and
lengths are not equal

class mirdata.datasets.phenicx_anechoic.Track(track_id, data_home, dataset_name, index, metadata)
Phenicx-Anechoic Track class

Parameters track_id (str) — track id of the track
Variables
* audio_path (1ist) — path to the audio files
* notes_path (1ist) — path to the score files
* notes_original_path (1ist) — path to the original score files
e instrument (str) — the name of the instrument
* piece (str) - the name of the piece
e n_voices (int) — the number of voices in this instrument
e track_id (str) — track id
Other Parameters
* notes (NoteData) — notes annotations that have been time-aligned to the audio
* notes_original (NoteData) — original score representation, not time-aligned

property audio: Optional[Tuple[numpy.ndarray, float]]
the track’s audio

Returns
* np.ndarray - the mono audio signal
¢ float - The sample rate of the audio file

get_audio_voice(id_voice: int) — Optional[Tuple[numpy.ndarray, float]]
the track’s audio

2.5. Dataset Loaders 201

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

Parameters id_voice (int) — The integer identifier for the voice e.g. 2 for bassoon-2
Returns

* np.ndarray - the mono audio signal

¢ float - The sample rate of the audio file

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

notes
the track’s notes corresponding to the score aligned to the audio

Returns NoteData — Note data for the track

notes_original
the track’s notes corresponding to the original score

Returns NoteData — Note data for the track

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.phenicx_anechoic.load_audio(fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a Phenicx-Anechoic audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

* np.ndarray - the audio signal

* float - The sample rate of the audio file

mirdata.datasets.phenicx_anechoic.load_score(fhandle: TextlO) — mirdata.annotations.NoteData
Load a Phenicx-Anechoic score file.

Parameters fhandle (str or file-like) — File-like object or path to score file
Returns NoteData — Note data for the given track

2.5.40 queen

Queen Dataset Loader

Dataset Info

Queen Dataset includes chord, key, and segmentation annotations for 51 Queen songs. Details can be found in http:
//matthiasmauch.net/_pdf/mauch_omp_2009.pdf and http://isophonics.net/content/reference-annotations-queen.

The CDs used in this dataset are: Queen: Greatest Hits I, Parlophone, 0777 7 8950424 Queen: Greatest Hits II,
Parlophone, CDP 7979712 Queen: Greatest Hits III, Parlophone, 7243 52389421

In the progress of labelling the chords, C4DM researchers used the following literature to verify their judgements:
Queen, Greatest Hits I, International Music Publications Ltd, London, ISBN 0-571-52828-7
Queen, Greatest Hits II, Queen Music Ltd./EMI Music Publishing (Barnes Music Engraving), ISBN 0-86175-465-4

202 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
http://matthiasmauch.net/_pdf/mauch_omp_2009.pdf
http://matthiasmauch.net/_pdf/mauch_omp_2009.pdf
http://isophonics.net/content/reference-annotations-queen

mirdata, Release 0.3.8

Acknowledgements We’d like to thank our student annotators:

Eric Gyingy Diako Rasoul Felix Stiller Helena du Toit Vinh Ton Chuks Chiejine

class mirdata.datasets.queen.Dataset (data_home=None, version='default")
Queen dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
* bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None)—
e remotes (dict or None) - data to be downloaded
e readme (str) — information about the dataset
* track (function) — a function mapping a track_id to a mirdata.core.Track
* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.queen.load_audio

load_chords (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.queen.load_chords

load_key (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.queen.load_key

load_sections(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.queen.load_sections

class mirdata.datasets.queen.Track(track_id, data_home, dataset_name, index, metadata)
Queen track class

Parameters track_id (str) — track id of the track
Variables
* audio_path (str) — track audio path
e chords_path (str) — chord annotation path
* keys_path (str) — key annotation path
» sections_path (str) — sections annotation path
e title (str) —title of the track
e track_id (str) — track id
Other Parameters
e chords (ChordData) — human-labeled chord annotations
* key (KeyData) — local key annotations
 sections (SectionData) — section annotations

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

2.5. Dataset Loaders 203

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

Returns
 np.ndarray - audio signal
* float - sample rate

to_jams ()
the track’s data in jams format

Returns jams.JAMS — return track data in jam format

mirdata.datasets.queen.load_audio (fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a Queen audio file.

Parameters fhandle (str) — path to an audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.queen.load_chords (fhandle: TextlO) — mirdata.annotations.ChordData
Load Queen format chord data from a file

Parameters fhandle (str or file-like) — path or file-like object pointing to a chord file
Returns (ChordData) — loaded chord data

mirdata.datasets.queen.load_key (fhandle: TextlO) — mirdata.annotations.KeyData
Load Queen format key data from a file

Parameters fhandle (str or file-like) — path or file-like object pointing to a key file
Returns (KeyData) —loaded key data

mirdata.datasets.queen.load_sections (fhandle: TextIO) — mirdata.annotations.SectionData
Load Queen format section data from a file

Parameters fhandle (str or file-like) — path or file-like object pointing to a section file

Returns (SectionData) — loaded section data

2.5.41 rwc_classical

RWC Classical Dataset Loader

Dataset Info
The Classical Music Database consists of 50 pieces
* Symphonies: 4 pieces
* Concerti: 2 pieces
¢ Orchestral music: 4 pieces
e Chamber music: 10 pieces
* Solo performances: 24 pieces
* Vocal performances: 6 pieces
A note about the Beat annotations:

* 48 corresponds to the duration of a quarter note (crotchet)

204 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

* 24 corresponds to the duration of an eighth note (quaver)
* 384 corresponds to the position of a downbeat

In 4/4 time signature, they correspond as follows:

384: 1st beat in a measure (i.e., downbeat position)
48: 2nd beat
96: 3rd beat
144 4th beat

In 3/4 time signature, they correspond as follows:

384: 1st beat in a measure (i.e., downbeat position)
48: 2nd beat
96: 3rd beat

In 6/8 time signature, they correspond as follows:

384: 1st beat in a measure (i.e., downbeat position)

24: 2nd beat
48: 3rd beat
72: 4th beat
96: 5th beat

120: 6th beat

For more details, please visit: https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-c.html

class mirdata.datasets.rwc_classical.Dataset (data_home=None, version="default")
The rwc_classical dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset

e bibtex (str or None)— dataset citation/s in bibtex format

indexes (dict or None)-—

remotes (dict or None)— data to be downloaded

e readme (str) — information about the dataset

* track (function) - a function mapping a track_id to a mirdata.core.Track

* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

2.5. Dataset Loaders 205

https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-c.html

mirdata, Release 0.3.8

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (list or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
* ValueError - if invalid keys are passed to partial_download
e I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary

Returns dict — a dictionary containing the elements in each split

206 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.rwc_classical.load_audio

load_beats(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.rwc_classical.load_beats

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_sections (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.rwc_classical.load_sections

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.rwc_classical.Track(track_id, data_home, dataset_name, index, metadata)
rwc_classical Track class

Parameters track_id (str) — track id of the track
Variables
e artist (str) — the track’s artist

» audio_path (str) — path of the audio file

2.5. Dataset Loaders 207

mirdata, Release 0.3.8

* beats_path (str) — path of the beat annotation file

* category (str)— One of ‘Symphony’, ‘Concerto’, ‘Orchestral’, ‘Solo’, ‘Chamber’, ‘Vocal’,
or blank.

» composer (str) — Composer of this Track.

e duration (float) — Duration of the track in seconds

e piece_number (str) — Piece number of this Track, [1-50]

» sections_path (str) — path of the section annotation file

» suffix (str) - string within MO1-M06

e title (str) - Title of The track.

e track_id (str) — track id

e track_number (str) - CD track number of this Track
Other Parameters

¢ sections (SectionData) — human-labeled section annotations

* beats (BeatData) — human-labeled beat annotations

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.rwc_classical.load_audio(fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a RWC audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.rwc_classical.load_beats(fhandle: TextlO) — mirdata.annotations.BeatData
Load rwc beat data from a file

Parameters fhandle (str or file-like) — File-like object or path to beats annotation file
Returns BeatData — beat data

mirdata.datasets.rwc_classical.load_sections(fhandle: TextlO) —
Optional[mirdata.annotations.SectionData]
Load rwc section data from a file

208 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

Parameters fhandle (st or file-like) — File-like object or path to sections annotation file

Returns SectionData — section data

2.5.42 rwc_jazz

RWC Jazz Dataset Loader.

Dataset Info
The Jazz Music Database consists of 50 pieces:
 Instrumentation variations: 35 pieces (5 pieces x 7 instrumentations).

The instrumentation-variation pieces were recorded to obtain different versions of the same piece;
i.e., different arrangements performed by different player instrumentations. Five standard-style jazz
pieces were originally composed and then performed in modern-jazz style using the following seven
instrumentations:

1. Piano solo

. Guitar solo

. Duo: Vibraphone + Piano, Flute + Piano, and Piano + Bass
. Piano trio: Piano + Bass + Drums

. Piano trio + Trumpet or Tenor saxophone

. Octet: Piano trio + Guitar + Alto saxophone + Baritone saxophone + Tenor saxophone x 2

~N N B W

. Piano trio + Vibraphone or Flute
* Style variations: 9 pieces

The style-variation pieces were recorded to represent various styles of jazz. They include four well-
known public-domain pieces and consist of

1. Vocal jazz: 2 pieces (including “Aura Lee”)

2. Big band jazz: 2 pieces (including “The Entertainer’)

3. Modal jazz: 2 pieces

4. Funky jazz: 2 pieces (including “Silent Night™)

5. Free jazz: 1 piece (including “Joyful, Joyful, We Adore Thee”)
* Fusion (crossover): 6 pieces

The fusion pieces were recorded to obtain music that combines elements of jazz with other styles such
as popular, rock, and latin. They include music with an eighth-note feel, music with a sixteenth-note
feel, and Latin jazz music.

For more details, please visit: https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-j.html

class mirdata.datasets.rwc_jazz.Dataset (data_home=None, version="default")
The rwc_jazz dataset

Variables
» data_home (str) — path where mirdata will look for the dataset

e version (str) —

2.5. Dataset Loaders 209

https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-j.html

mirdata, Release 0.3.8

e name (str) — the identifier of the dataset
* bibtex (str or None) — dataset citation/s in bibtex format

e indexes (dict or None)—

remotes (dict or None) - data to be downloaded

* readme (str) — information about the dataset

* track (function) — a function mapping a track_id to a mirdata.core.Track

* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

« allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
e I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

210

Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as

elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.

Defaults to 42
* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as

elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.

Defaults to 42
* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError — If this dataset does not have tracks

* NotImplementedError — If this dataset does not have predetermined splits

Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.rwc_jazz.load_audio

load_beats(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.rwc_jazz.load_beats

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_sections (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.rwc_jazz.load_sections

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

2.5.

Dataset Loaders

211

mirdata, Release 0.3.8

Returns list — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.rwc_jazz.Track(track_id, data_home, dataset_name, index, metadata)
rwc_jazz Track class

Parameters track_id (str) — track id of the track
Variables
e artist (str) — Artist name
» audio_path (str) — path of the audio file
* beats_path (str) — path of the beat annotation file
e duration (float) — Duration of the track in seconds
e instruments (str) — list of used instruments.
* piece_number (str) — Piece number of this Track, [1-50]
* sections_path (str) — path of the section annotation file
» suffix (str) - M01-M04
e title (str) - Title of The track.
e track_id (str) — track id
e track_number (str)— CD track number of this Track
* variation (str) - style variations
Other Parameters
 sections (SectionData) — human-labeled section data
* beats (BeatData) — human-labeled beat data

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type

Returns str or None — joined path string or None

212 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

2.5.43 rwc_popular

RWC Popular Dataset Loader

Dataset Info

The Popular Music Database consists of 100 songs — 20 songs with English lyrics performed in the style of popular
music typical of songs on the American hit charts in the 1980s, and 80 songs with Japanese lyrics performed in the
style of modern Japanese popular music typical of songs on the Japanese hit charts in the 1990s.

For more details, please visit: https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-p.html

class mirdata.datasets.rwc_popular.Dataset (data_home=None, version="default")
The rwc_popular dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
* bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None) -
e remotes (dict or None) - data to be downloaded
* readme (str) — information about the dataset
* track (function) — a function mapping a track_id to a mirdata.core.Track
* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

2.5. Dataset Loaders 213

https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-p.html

mirdata, Release 0.3.8

« partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
* ValueError - if invalid keys are passed to partial_download
» TOError — if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

» AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises
e AttributeError — If this dataset does not have tracks
e NotImplementedError — If this dataset does not have predetermined splits

Returns dict — splits, keyed by split name and with values of lists of track_ids

214 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

license()
Print the license

load_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.rwc_popular.load_audio

load_beats(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.rwc_popular.load_beats

load_chords (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.rwc_popular.load_chords

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError — If the dataset does not support Multitracks

load_sections (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.rwc_popular.load_sections

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

load_vocal_activity(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.rwc_popular.load_vocal_activity

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.rwc_popular.Track(track_id, data_home, dataset_name, index, metadata)
rwc_popular Track class

Parameters track_id (str) — track id of the track
Variables
e artist (str) — artist
* audio_path (str) — path of the audio file
* beats_path (str) — path of the beat annotation file

» chords_path (str) — path of the chord annotation file

2.5. Dataset Loaders 215

mirdata, Release 0.3.8

* drum_information (str)-If the drumis ‘Drum sequences’, ‘Live drums’, or ‘Drum loops’
e duration (float) — Duration of the track in seconds
e instruments (str) — List of used instruments
e piece_number (str) — Piece number, [1-50]
* sections_path (str) — path of the section annotation file
* singer_information (str) — could be male, female or vocal group
» suffix (str) - M01-M04
* tempo (str) — Tempo of the track in BPM
e title (str) —title
e track_id (str) - track id
e track_number (str) - CD track number
* voca_inst_path (str) — path of the vocal/instrumental annotation file
Other Parameters
* sections (SectionData) — human-labeled section annotation
¢ beats (BeatData) — human-labeled beat annotation
¢ chords (ChordData) — human-labeled chord annotation
* vocal_instrument_activity (EventData) — human-labeled vocal/instrument activity

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.rwc_popular.load_chords (fhandle: TextlO) — mirdata.annotations.ChordData
Load rwc chord data from a file

Parameters fhandle (str or file-like) — File-like object or path to chord annotation file
Returns ChordData — chord data

mirdata.datasets.rwc_popular.load_vocal_activity (fhandle: TextIO) — mirdata.annotations.EventData
Load rwc vocal activity data from a file

Parameters fhandle (str or file-like) — File-like object or path to vocal activity annotation file

Returns EventData — vocal activity data

216 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

2.5.44 salami

SALAMI Dataset Loader

Dataset Info

The SALAMI dataset contains Structural Annotations of a Large Amount of Music Information: the public portion
contains over 2200 annotations of over 1300 unique tracks.

NB: mirdata relies on the corrected version of the 2.0 annotations: Details can be found at https://github.com/bmcfee/
salami-data-public/tree/hierarchy-corrections and https://github.com/DDMAL/salami-data-public/pull/15.

For more details, please visit: https://github.com/DDMAL/salami-data-public

class mirdata.datasets.salami.Dataset (data_home=None, version='default")
The salami dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset

* bibtex (str or None) — dataset citation/s in bibtex format

indexes (dict or None)—

remotes (dict or None) - data to be downloaded

e readme (str) — information about the dataset

* track (function) - a function mapping a track_id to a mirdata.core.Track

* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite(Q)
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.

2.5. Dataset Loaders 217

https://github.com/bmcfee/salami-data-public/tree/hierarchy-corrections
https://github.com/bmcfee/salami-data-public/tree/hierarchy-corrections
https://github.com/DDMAL/salami-data-public/pull/15
https://github.com/DDMAL/salami-data-public

mirdata, Release 0.3.8

* cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
* I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

218 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.salami.load_audio

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}

Raises NotImplementedError - If the dataset does not support Multitracks

load_sections(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.salami.load_sections

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}

Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids

Return track ids

Returns /ist — A list of track ids

track_ids

Return track ids

Returns /ist — A list of track ids

validate(verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output

Returns

e list - files in the index but are missing locally

e list - files which have an invalid checksum

class mirdata.datasets.salami.Track(track_id, data_home, dataset_name, index, metadata)
salami Track class

Parameters track_id (str) — track id of the track

Variables

annotator_1_id (str)— number that identifies annotator 1

annotator_1_time (str) — time that the annotator 1 took to complete the annotation
annotator_2_id (str) — number that identifies annotator 1

annotator_2_time (str) — time that the annotator 1 took to complete the annotation
artist (str) - song artist

audio_path (str) — path to the audio file

broad_genre (str) — broad genre of the song

duration (float) — duration of song in seconds

genre (str) — genre of the song

sections_annotatorl_lowercase_path (str) — path to annotations in hierarchy level
1 from annotator 1

2.5. Dataset Loaders 219

mirdata, Release 0.3.8

» sections_annotatorl_uppercase_path (str) — path to annotations in hierarchy level
0 from annotator 1

* sections_annotator2_lowercase_path (str) — path to annotations in hierarchy level
1 from annotator 2

» sections_annotator2_uppercase_path (str) — path to annotations in hierarchy level
0 from annotator 2

* source (str) — dataset or source of song
* title (str) - title of the song
Other Parameters

* sections_annotator_1_uppercase (SectionData) — annotations in hierarchy level 0 from an-
notator 1

* sections_annotator_1_lowercase (SectionData) — annotations in hierarchy level 1 from an-
notator 1

* sections_annotator_2_uppercase (SectionData) — annotations in hierarchy level 0 from an-
notator 2

* sections_annotator_2_lowercase (SectionData) — annotations in hierarchy level 1 from an-
notator 2

property audio: Tuple[numpy.ndarray, float]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.salami.load_audio(fpath: str) — Tuple[numpy.ndarray, float]
Load a Salami audio file.

Parameters fpath (str) — path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.salami.load_sections (fhandle: TextIO) — mirdata.annotations.SectionData
Load salami sections data from a file

Parameters fhandle (str or file-like) — File-like object or path to section annotation file

Returns SectionData — section data

220 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

2.5.45 saraga_carnatic

Saraga Dataset Loader

Dataset Info

This dataset contains time aligned melody, rhythm and structural annotations of Carnatic Music tracks, extracted from
the large open Indian Art Music corpora of CompMusic.

The dataset contains the following manual annotations referring to audio files:

* Section and tempo annotations stored as start and end timestamps together with the name of the section and
tempo during the section (in a separate file)

» Sama annotations referring to rhythmic cycle boundaries stored as timestamps.

 Phrase annotations stored as timestamps and transcription of the phrases using solfege symbols ({S, r, R, g, G,
m, M, P,d, D, n, N}).

* Audio features automatically extracted and stored: pitch and tonic.

* The annotations are stored in text files, named as the audio filename but with the respective extension at the end,
for instance: “Bhuvini Dasudane.tempo-manual.txt”.

The dataset contains a total of 249 tracks. A total of 168 tracks have multitrack audio.

The files of this dataset are shared with the following license: Creative Commons Attribution Non Commercial Share
Alike 4.0 International

Dataset compiled by: Bozkurt, B.; Srinivasamurthy, A.; Gulati, S. and Serra, X.

For more information about the dataset as well as [AM and annotations, please refer to: https://mtg.github.io/saraga/,
where a really detailed explanation of the data and annotations is published.

class mirdata.datasets.saraga_carnatic.Dataset (data_home=None, version="default")
The saraga_carnatic dataset

Variables

* data_home (str) — path where mirdata will look for the dataset

version (str) -
e name (str) — the identifier of the dataset

* bibtex (str or None) — dataset citation/s in bibtex format

indexes (dict or None)—

remotes (dict or None) - data to be downloaded

e readme (str) — information about the dataset

* track (function) - a function mapping a track_id to a mirdata.core.Track

* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

2.5. Dataset Loaders 221

https://mtg.github.io/saraga/

mirdata, Release 0.3.8

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=Fualse, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
* I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

222 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.saraga_carnatic.load_audio

load_metadata(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.saraga_carnatic.load_metadata

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_phrases (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.saraga_carnatic.load_phrases

load_pitch(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.saraga_carnatic.load_pitch

load_sama (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.saraga_carnatic.load_sama

load_sections(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.saraga_carnatic.load_sections

load_tempo (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.saraga_carnatic.load_tempo

load_tonic(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.saraga_carnatic.load_tonic

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

2.5. Dataset Loaders 223

mirdata, Release 0.3.8

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.saraga_carnatic.Track(track_id, data_home, dataset_name, index, metadata)
Saraga Track Carnatic class

Parameters
e track_id (str) — track id of the track

» data_home (str) — Local path where the dataset is stored. default=None If None, looks for
the data in the default directory, ~/mir_datasets

Variables
* audio_path (str) — path to audio file
* audio_ghatam_path (str) — path to ghatam audio file
* audio_mridangam_left_path (str) — path to mridangam left audio file
* audio_mridangam_right_path (str) — path to mridangam right audio file
* audio_violin_path (str) — path to violin audio file
» audio_vocal_s_path (str) — path to vocal s audio file
* audio_vocal_pat (str) — path to vocal pat audio file
* ctonic_path (srt) — path to ctonic annotation file
» pitch_path (srt) — path to pitch annotation file
» pitch_vocal_path (srt) — path to vocal pitch annotation file
* tempo_path (srt) — path to tempo annotation file
* sama_path (srt) — path to sama annotation file
» sections_path (srt) - path to sections annotation file
» phrases_path (srt) — path to phrases annotation file
* metadata_path (srt) — path to metadata file
Other Parameters
* tonic (float) — tonic annotation
e pitch (FOData) — pitch annotation
* pitch_vocal (FOData) — vocal pitch annotation
* tempo (dict) — tempo annotations
e sama (BeatData) — sama section annotations
* sections (SectionData) — track section annotations

* phrases (SectionData) — phrase annotations

224 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* metadata (dict) — track metadata with the following fields:
— title (str): Title of the piece in the track
— mbid (str): MusicBrainz ID of the track

— album_artists (list, dicts): list of dicts containing the album artists present in the track and
its mbid

— artists (list, dicts): list of dicts containing information of the featuring artists in the track
— raaga (list, dict): list of dicts containing information about the raagas present in the track
— form (list, dict): list of dicts containing information about the forms present in the track
— work (list, dicts): list of dicts containing the work present in the piece, and its mbid

— taala (list, dicts): list of dicts containing the talas present in the track and its uuid

— concert (list, dicts): list of dicts containing the concert where the track is present and its
mbid

property audio
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.saraga_carnatic.load_audio (audio_path)
Load a Saraga Carnatic audio file.

Parameters audio_path (str) — path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.saraga_carnatic.load_metadata(fhandle)
Load a Saraga Carnatic metadata file

Parameters fhandle (str or file-like) — File-like object or path to metadata json
Returns
dict —
metadata with the following fields
* title (str): Title of the piece in the track

e mbid (str): MusicBrainz ID of the track

2.5. Dataset Loaders

mirdata, Release 0.3.8

* album_artists (list, dicts): list of dicts containing the album artists present in the track and
its mbid

* artists (list, dicts): list of dicts containing information of the featuring artists in the track

* raaga (list, dict): list of dicts containing information about the raagas present in the track

* form (list, dict): list of dicts containing information about the forms present in the track

» work (list, dicts): list of dicts containing the work present in the piece, and its mbid

* taala (list, dicts): list of dicts containing the talas present in the track and its uuid

* concert (list, dicts): list of dicts containing the concert where the track is present and its mbid

mirdata.datasets.saraga_carnatic.load_phrases (fhandle)
Load phrases

Parameters fhandle (str or file-like) — Local path where the phrase annotation is stored.
Returns EventData — phrases annotation for track

mirdata.datasets.saraga_carnatic.load_pitch(fhandle)
Load pitch

Parameters fhandle (str or file-like) — Local path where the pitch annotation is stored.
Returns FOData — pitch annotation

mirdata.datasets.saraga_carnatic.load_sama (fhandle)
Load sama

Parameters fhandle (str or file-like) — Local path where the sama annotation is stored.
Returns BeatData — sama annotations

mirdata.datasets.saraga_carnatic.load_sections (fhandle)
Load sections from carnatic collection

Parameters fhandle (str or file-like) — Local path where the section annotation is stored.
Returns SectionData — section annotations for track

mirdata.datasets.saraga_carnatic.load_tempo (fhandle)
Load tempo from carnatic collection

Parameters fhandle (str or file-like) — Local path where the tempo annotation is stored.
Returns
dict —
Dictionary of tempo information with the following keys:
* tempo_apm: tempo in aksharas per minute (APM)
* tempo_bpm: tempo in beats per minute (BPM)
* sama_interval: median duration (in seconds) of one tala cycle
* beats_per_cycle: number of beats in one cycle of the tala
* subdivisions: number of aksharas per beat of the tala

mirdata.datasets.saraga_carnatic.load_tonic(fhandle)
Load track absolute tonic

Parameters fhandle (str or file-like) — Local path where the tonic path is stored.

226 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Returns int — Tonic annotation in Hz

2.5.46 saraga_hindustani

Saraga Dataset Loader

Dataset Info

This dataset contains time aligned melody, rhythm and structural annotations of Hindustani Music tracks, extracted
from the large open Indian Art Music corpora of CompMusic.

The dataset contains the following manual annotations referring to audio files:

* Section and tempo annotations stored as start and end timestamps together with the name of the section and
tempo during the section (in a separate file)

» Sama annotations referring to rhythmic cycle boundaries stored as timestamps

 Phrase annotations stored as timestamps and transcription of the phrases using solfége symbols ({S, r, R, g, G,
m, M, P, d, D, n, N})

* Audio features automatically extracted and stored: pitch and tonic.

* The annotations are stored in text files, named as the audio filename but with the respective extension at the end,
for instance: “Bhuvini Dasudane.tempo-manual.txt”.

The dataset contains a total of 108 tracks.

The files of this dataset are shared with the following license: Creative Commons Attribution Non Commercial Share
Alike 4.0 International

Dataset compiled by: Bozkurt, B.; Srinivasamurthy, A.; Gulati, S. and Serra, X.

For more information about the dataset as well as [AM and annotations, please refer to: https://mtg.github.io/saraga/,
where a really detailed explanation of the data and annotations is published.

class mirdata.datasets.saraga_hindustani.Dataset (data_home=None, version="default")
The saraga_hindustani dataset

Variables

* data_home (str) — path where mirdata will look for the dataset

version (str) -
e name (str) — the identifier of the dataset

e bibtex (str or None)— dataset citation/s in bibtex format

indexes (dict or None)-—

remotes (dict or None)— data to be downloaded

e readme (str) — information about the dataset

* track (function) - a function mapping a track_id to a mirdata.core.Track

e multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

2.5. Dataset Loaders 227

https://mtg.github.io/saraga/

mirdata, Release 0.3.8

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=Fualse)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
e ValueError - if invalid keys are passed to partial_download
* IOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (list) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

228 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.saraga_hindustani.load_audio

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_phrases (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.saraga_hindustani.load_phrases

load_pitch(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.saraga_hindustani.load_pitch

load_sama (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.saraga_hindustani.load_sama

load_sections(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.saraga_hindustani.load_sections

load_tempo (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.saraga_hindustani.load_tempo

load_tonic (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.saraga_hindustani.load_tonic

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

2.5. Dataset Loaders 229

mirdata, Release 0.3.8

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.saraga_hindustani.Track(track_id, data_home, dataset_name, index, metadata)
Saraga Hindustani Track class

Parameters
e track_id (str) — track id of the track

» data_home (str) — Local path where the dataset is stored. default=None If None, looks for
the data in the default directory, ~/mir_datasets

Variables
* audio_path (str) — path to audio file

* ctonic_path (str) — path to ctonic annotation file

pitch_path (str) — path to pitch annotation file

tempo_path (str) — path to tempo annotation file

sama_path (str) — path to sama annotation file
» sections_path (str) — path to sections annotation file
» phrases_path (str) — path to phrases annotation file
* metadata_path (str) — path to metadata annotation file
Other Parameters
* tonic (float) — tonic annotation
e pitch (FOData) — pitch annotation
* tempo (dict) — tempo annotations
e sama (BeatData) — Sama section annotations
¢ sections (SectionData) — track section annotations
 phrases (EventData) — phrase annotations
* metadata (dict) — track metadata with the following fields
— title (str): Title of the piece in the track
— mbid (str): MusicBrainz ID of the track

— album_artists (list, dicts): list of dicts containing the album artists present in the track and
its mbid

— artists (list, dicts): list of dicts containing information of the featuring artists in the track
— raags (list, dict): list of dicts containing information about the raags present in the track

— forms (list, dict): list of dicts containing information about the forms present in the track

230 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

release (list, dicts): list of dicts containing information of the release where the track is
found

works (list, dicts): list of dicts containing the work present in the piece, and its mbid

taals (list, dicts): list of dicts containing the taals present in the track and its uuid

layas (list, dicts): list of dicts containing the layas present in the track and its uuid

property audio
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.saraga_hindustani.load_audio (audio_path)
Load a Saraga Hindustani audio file.

Parameters audio_path (str) — path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.saraga_hindustani.load_metadata(fhandle)
Load a Saraga Hindustani metadata file

Parameters fhandle (str or file-like) — path to metadata json file
Returns
dict —
metadata with the following fields
* title (str): Title of the piece in the track
e mbid (str): MusicBrainz ID of the track

 album_artists (list, dicts): list of dicts containing the album artists present in the track and
its mbid

* artists (list, dicts): list of dicts containing information of the featuring artists in the track

* raags (list, dict): list of dicts containing information about the raags present in the track

* forms (list, dict): list of dicts containing information about the forms present in the track

* release (list, dicts): list of dicts containing information of the release where the track is found

» works (list, dicts): list of dicts containing the work present in the piece, and its mbid

2.5. Dataset Loaders 231

mirdata, Release 0.3.8

* taals (list, dicts): list of dicts containing the taals present in the track and its uuid
* layas (list, dicts): list of dicts containing the layas present in the track and its uuid

mirdata.datasets.saraga_hindustani.load_phrases(fhandle)
Load phrases

Parameters fhandle (str or file-like) — Local path where the phrase annotation is stored. If None,
returns None.

Returns EventData — phrases annotation for track

mirdata.datasets.saraga_hindustani.load_pitch(fhandle)
Load automatic extracted pitch or melody

Parameters fhandle (str or file-like) — Local path where the pitch annotation is stored. If None,
returns None.

Returns FOData — pitch annotation

mirdata.datasets.saraga_hindustani.load_sama (fhandie)
Load sama

Parameters fhandle (str or file-like) — Local path where the sama annotation is stored. If None,
returns None.

Returns SectionData — sama annotations

mirdata.datasets.saraga_hindustani.load_sections (fhandle)
Load tracks sections

Parameters fhandle (str or file-like) — Local path where the section annotation is stored.
Returns SectionData — section annotations for track

mirdata.datasets.saraga_hindustani.load_tempo (fhandle)
Load tempo from hindustani collection

Parameters fhandle (str or file-like) — Local path where the tempo annotation is stored.
Returns
dict — Dictionary of tempo information with the following keys:
* tempo: median tempo for the section in matras per minute (MPM)

* matra_interval: tempo expressed as the duration of the matra (essentially dividing 60 by
tempo, expressed in seconds)

* sama_interval: median duration of one tal cycle in the section

* matras_per_cycle: indicator of the structure of the tal, showing the number of matra in a
cycle of the tal of the recording

e start_time: start time of the section
e duration: duration of the section

mirdata.datasets.saraga_hindustani.load_tonic(fhandle)
Load track absolute tonic

Parameters fhandle (str or file-like) — Local path where the tonic path is stored. If None, returns
None.

Returns int — Tonic annotation in Hz

232 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

2.5.47 scms

Saraga-Carnatic-Melody-Synth loader

Dataset Info

This dataset contains time aligned vocal melody and activations for Carnatic Music recordings, extracted from the
Saraga Carnatic dataset. The recordings have passed through a Carnatic-aware Analysis/Synthesis framework to convert
automatically extracted pitch tracks into ground-truth annotations. This dataset is not meant to be listened to, but to be
used as training and evaluation data for the vocal pitch extraction research of Indian Art Music.

The dataset contains a total of 2460 tracks, which generally have a length of 30 seconds, in some cases a bit less. All
the tracks have vocals at some point.

The files of this dataset are shared with the following license: Creative Commons Attribution Non Commercial Share
Alike 4.0 International

Dataset compiled by: Genis Plaja-Roglans, Thomas Nuttall, Lara Pearson, Xavier Serra, and Marius Miron.

For more information about Saraga Carnatic please refer to https://mtg.github.io/saraga/.

class mirdata.datasets.scms.Dataset (data_home=None, version="'default")
The Saraga-Carnatic-Melody-Synth dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset

* bibtex (str or None) — dataset citation/s in bibtex format

indexes (dict or None)—

remotes (dict or None) - data to be downloaded

* readme (str) — information about the dataset

* track (function) — a function mapping a track_id to a mirdata.core.Track

* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

2.5. Dataset Loaders 233

https://mtg.github.io/saraga/

mirdata, Release 0.3.8

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

« allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
* IOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

* NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises
e AttributeError — If this dataset does not have tracks

* NotImplementedError — If this dataset does not have predetermined splits

234 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError — If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.scms.Track(track_id, data_home, dataset_name, index, metadata)
Saraga-Carnatic-Melody-Synth Track class

Parameters track_id (str) — track id of the track
Variables
e artist (str) — artist
* audio_path (str) — path to the audio file
» pitch_path (str) — path to the pitch annotation file
» activations_path (str) — path to the vocal activation annotation file
* tonic (str) — tonic of the recording
* gender (str) — gender
e artist — instrument of the track
e title (str) —title
* train (bool) — indicating if the track belongs to the train or testing set
e track_id (str) - track id

Other Parameters

2.5. Dataset Loaders

235

mirdata, Release 0.3.8

* pitch (FOData) — vocal pitch time-series
* activations (EventData) — time regions where the singing voice is present and active

property audio: Optional[Tuple[numpy.ndarray, float]]
The track”s audio

Returns
 np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.scms.load_activations (fhandle: TextlO) — Optional[mirdata.annotations. EventData]
load a Saraga-Carnatic-Melody-Synth activation annotation file

Parameters fhandle (str or file-like) — str or file-like to note annotation file
Raises IOError — if file doesn™t exist
Returns EventData — vocal activations

mirdata.datasets.scms.load_audio(fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a Saraga-Carnatic-Melody-Synth audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.scms.load_pitch(fhandle: TextIO) — mirdata.annotations.FOData
load a Saraga-Carnatic-Melody-Synth pitch annotation file

Parameters fhandle (str or file-like) — str or file-like to pitch annotation file
Raises IOError — if the path doesn”t exist

Returns FOData — pitch annotation

2.5.48 slakh

slakh Dataset Loader

Dataset Info

The Synthesized Lakh (Slakh) Dataset is a dataset of multi-track audio and aligned MIDI for music source separation
and multi-instrument automatic transcription. Individual MIDI tracks are synthesized from the Lakh MIDI Dataset
v0.1 using professional-grade sample-based virtual instruments, and the resulting audio is mixed together to make
musical mixtures.

236 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

The original release of Slakh, called Slakh2100, contains 2100 automatically mixed tracks and accompanying, aligned
MIDI files, synthesized from 187 instrument patches categorized into 34 classes, totaling 145 hours of mixture data.

This loader supports two versions of Slakh: - Slakh2100-redux: a deduplicated version of slakh2100 containing 1710
multitracks - baby-slakh: a mini version with 16k wav audio and only the first 20 tracks

This dataset was created at Mitsubishi Electric Research Labl (MERL) and Interactive Audio Lab at Northwestern
University by Ethan Manilow, Gordon Wichern, Prem Seetharaman, and Jonathan Le Roux.

For more information see http://www.slakh.com/

class mirdata.datasets.slakh.Dataset (data_home=None, version="default")
The slakh dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
e bibtex (str or None)— dataset citation/s in bibtex format
e indexes (dict or None)—
e remotes (dict or None) - data to be downloaded
e readme (str) — information about the dataset
* track (function) — a function mapping a track_id to a mirdata.core.Track
» multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (list or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.

¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

2.5. Dataset Loaders 237

http://www.slakh.com/

mirdata, Release 0.3.8

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
e TOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

» AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.slakh.load_audio

238 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

load_midi (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.slakh.load_midi

load_multif®_from_midi (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.io.load_multifO_from_midi

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_notes_from_midi (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.io.load_notes_from_midi

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns
* list - files in the index but are missing locally

e list - files which have an invalid checksum

mirdata.datasets.slakh.MIXING_GROUPS = {'bass': [32, 33, 34, 35, 36, 37, 38, 39],
'drums': [128], 'guitar': [24, 25, 26, 27, 28, 29, 30, 31], 'piano': [0, 1, 2, 3, 4,
5, 6, 71}

Mixing group to program number mapping

class mirdata.datasets.slakh.MultiTrack(mtrack_id, data_home, dataset_name, index, track_class,

metadata)
slakh multitrack class, containing information about the mix and the set of associated stems

Variables

e mtrack_id (str) —track id

tracks (dict) — {track_id: Track}

e track_audio_property (str)—the name of the attribute of Track which returns the audio
to be mixed

* mix_path (str) — path to the multitrack mix audio
* midi_path (str) — path to the full midi data used to generate the mixture

» metadata_path (str) — path to the multitrack metadata file

2.5. Dataset Loaders

239

mirdata, Release 0.3.8

e split (str or None)-one of ‘train’, ‘validation’, ‘test’, or ‘omitted’. ‘omitted’ tracks are
part of slakh2100-redux which were found to be duplicates in the original slakh2011.

» data_split (str or None)— equivalent to split (deprecated in 0.3.6)
* uuid (str) — File name of the original MIDI file from Lakh, sans extension
* lakh_midi_dir (str) — Path to the original MIDI file from a fresh download of Lakh

* normalized (bool) — whether the mix and stems were normalized according to the ITU-R
BS.1770-4 spec

» overall_gain (float) — gain applied to every stem to make sure mixture does not clip
when stems are summed

Other Parameters
* midi (PrettyMIDI) — midi data used to generate the mixture audio
* notes (NoteData) — note representation of the midi data
o multif0 (MultiFOData) — multifO representation of the midi data

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
 np.ndarray - audio signal
* float - sample rate

get_mix()
Create a linear mixture given a subset of tracks.

Parameters track_keys (/ist) — list of track keys to mix together
Returns np.ndarray — mixture audio with shape (n_samples, n_channels)

get_path(key)
Get absolute path to multitrack audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

get_random_target (n_tracks=None, min_weight=0.3, max_weight=1.0)
Get a random target by combining a random selection of tracks with random weights

Parameters
* n_tracks (int or None) — number of tracks to randomly mix. If None, uses all tracks
* min_weight (float) — minimum possible weight when mixing
* max_weight (float) — maximum possible weight when mixing
Returns
 np.ndarray - mixture audio with shape (n_samples, n_channels)
e list - list of keys of included tracks
e list - list of weights used to mix tracks

get_submix_by_group (target_groups)
Create submixes grouped by instrument type. Creates one submix per target group, plus one additional
“other” group for any remaining sources. Only tracks with available audio are mixed.

240 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

Parameters target_groups (list) — List of target groups. Elements should be one of MIX-

ING_GROUPS, e.g. [“bass”, “guitar”]

Returns ** submixes (dict)* — {group: audio_signal} of submixes * groups (dict): {group: list

of track ids} of submixes

get_target (frack_keys, weights=None, average=True, enforce_length=True)
Get target which is a linear mixture of tracks

Parameters

* track_keys (/ist) — list of track keys to mix together
 weights (/ist or None) — list of positive scalars to be used in the average

 average (bool) — if True, computes a weighted average of the tracks if False, computes a
weighted sum of the tracks

* enforce_length (bool) — If True, raises ValueError if the tracks are not the same length. If
False, pads audio with zeros to match the length of the longest track

Returns np.ndarray — target audio with shape (n_channels, n_samples)

Raises ValueError - if sample rates of the tracks are not equal if enforce_length=True and

to_jams ()

lengths are not equal

Jams: the track’s data in jams format

class mirdata.datasets.slakh.Track(track_id, data_home, dataset_name, index, metadata)
slakh Track class, for individual stems

Variables

audio_path (str or None) - path to the track’s audio file. For some unusual tracks, such
as sound effects, there is no audio and this attribute is None.

split (str or None)—one of ‘train’, ‘validation’, ‘test’, or ‘omitted’. ‘omitted’ tracks are
part of slakh2100-redux which were found to be duplicates in the original slakh2011. In
baby slakh there are no splits, so this attribute is None.

data_split (str or None) - equivalent to split (deprecated in 0.3.6)
metadata_path (str) — path to the multitrack’s metadata file

midi_path (str or None) — path to the track’s midi file. For some unusual tracks, such
as sound effects, there is no midi and this attribute is None.

mtrack_id (str) — the track’s multitrack id
track_id (str) —track id

instrument (str) — MIDI instrument class, see link for details: https://en.wikipedia.org/
wiki/General_MIDI#Program_change_events

integrated_loudness (float) — integrated loudness (dB) of this track as calculated by
the ITU-R BS.1770-4 spec

is_drum (bool) — whether the “drum” flag is true for this MIDI track
midi_program_name (str)— MIDI instrument program name
plugin_name (str) — patch/plugin name that rendered the audio file

mixing_group (str) — which mixing group the track belongs to. One of MIX-
ING_GROUPS.

2.5. Dataset Loaders

241

https://en.wikipedia.org/wiki/General_MIDI#Program_change_events
https://en.wikipedia.org/wiki/General_MIDI#Program_change_events

mirdata, Release 0.3.8

* program_number (int) — MIDI instrument program number
Other Parameters
* midi (PrettyMIDI) — midi data used to generate the audio

* notes (NoteData or None) — note representation of the midi data. If there are no notes in the
midi file, returns None.

o multif0 (MultiFOData or None) — multifQ representaation of the midi data. If there are no
notes in the midi file, returns None.

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
¢ float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Jams: the track’s data in jams format

mirdata.datasets.slakh.load_audio (fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a slakh audio file.

Parameters fhandle (str or file-like) — path or file-like object pointing to an audio file
Returns
* np.ndarray - the audio signal

* float - The sample rate of the audio file

2.5.49 tinysol

TinySOL Dataset Loader.

Dataset Info
TinySOL is a dataset of 2913 samples, each containing a single musical note from one of 14 different instruments:
* Bass Tuba
* French Horn
* Trombone
e Trumpet in C
* Accordion
* Contrabass
* Violin

¢ Viola

242 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

* Violoncello

e Bassoon

* Clarinet in B-flat
e Flute

* Oboe

» Alto Saxophone

These sounds were originally recorded at Ircam in Paris (France) between 1996 and 1999, as part of a larger project
named Studio On Line (SOL). Although SOL contains many combinations of mutes and extended playing techniques,
TinySOL purely consists of sounds played in the so-called “ordinary” style, and in absence of mute.

TinySOL can be used for education and research purposes. In particular, it can be employed as a dataset for training
and/or evaluating music information retrieval (MIR) systems, for tasks such as instrument recognition or fundamental
frequency estimation. For this purpose, we provide an official 5-fold split of TinySOL as a metadata attribute. This split
has been carefully balanced in terms of instrumentation, pitch range, and dynamics. For the sake of research repro-
ducibility, we encourage users of TinySOL to adopt this split and report their results in terms of average performance
across folds.

We encourage TinySOL users to subscribe to the Ircam Forum so that they can have access to larger versions of SOL.

For more details, please visit: https://www.orch-idea.org/

class mirdata.datasets.tinysol.Dataset (data_home=None, version='default")
The tinysol dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
e bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None)—
e remotes (dict or None)— data to be downloaded
e readme (str) — information about the dataset

* track (function) — a function mapping a track_id to a mirdata.core.Track

multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

2.5. Dataset Loaders 243

https://www.orch-idea.org/

mirdata, Release 0.3.8

Returns szr — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
* TOError — if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

» AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

244 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Raises

» AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.tinysol.load_audio

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.datasets.tinysol.Track(track_id, data_home, dataset_name, index, metadata)
tinysol Track class

Parameters track_id (str) — track id of the track

Variables
* audio_path (str) — path of the audio file
* dynamics (str) — dynamics abbreviation. Ex: pp, mf, ff, etc.
e dynamics_id (int) — pp=0, p=1, mf=2, {=3, ff=4
» family (str) - instrument family encoded by its English name
* instance_id (int) - instance ID. Either equal to 0, 1, 2, or 3.
e instrument_abbr (str) — instrument abbreviation

» instrument_full (str) - instrument encoded by its English name

2.5. Dataset Loaders 245

mirdata, Release 0.3.8

» is_resampled (bool) — True if this sample was pitch-shifted from a neighbor; False if it
was genuinely recorded.

» pitch (str) - string containing English pitch class and octave number
* pitch_id (int) — MIDI note index, where middle C (“C4”) corresponds to 60

» string_id (NoneType) — string ID. By musical convention, the first string is the highest.
On wind instruments, this is replaced by None.

* technique_abbr (str) — playing technique abbreviation
» technique_full (str) - playing technique encoded by its English name
e track_id (str) — track id

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.tinysol.load_audio(fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a TinySOL audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns
* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

2.5.50 tonality_classicaldb

Tonality classicalDB Dataset Loader

Dataset Info

The Tonality classicalDB Dataset includes 881 classical musical pieces across different styles from s.XVII to s. XX
annotated with single-key labels.

Tonality classicalDB Dataset was created as part of:

Goémez, E. (2006). PhD Thesis. Tonal description of music audio signals.
Department of Information and Communication Technologies.

246 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

This dataset is mainly intended to assess the performance of computational key estimation algorithms in classical music.

2020 note: The audio is privates. If you don’t have the original audio collection, you could create it from your private
collection because most of the recordings are well known. To this end, we provide musicbrainz metadata. Moreover,
we have added the spectrum and HPCP chromagram of each audio.

This dataset can be used with mirdata library: https://github.com/mir-dataset-loaders/mirdata

Spectrum features have been computed as is shown here: https://github.com/mir-dataset-loaders/mirdata-notebooks/
blob/master/Tonality_classicalDB/ClassicalDB_spectrum_features.ipynb

HPCP chromagram has been computed as is shown here: https://github.com/mir-dataset-loaders/mirdata-notebooks/
blob/master/Tonality_classicalDB/ClassicalDB_HPCP_features.ipynb

Musicbrainz metadata has been computed as is shown here: https://github.com/mir-dataset-loaders/
mirdata-notebooks/blob/master/Tonality_classicalDB/ClassicalDB_musicbrainz_metadata.ipynb

class mirdata.datasets.tonality_classicaldb.Dataset (data_home=None, version='default")
The tonality_classicaldb dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
* name (str) — the identifier of the dataset

* bibtex (str or None) — dataset citation/s in bibtex format

indexes (dict or None)—

remotes (dict or None) - data to be downloaded

e readme (str) — information about the dataset

* track (function) — a function mapping a track_id to a mirdata.core.Track

* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (list or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

2.5. Dataset Loaders 247

https://github.com/mir-dataset-loaders/mirdata
https://github.com/mir-dataset-loaders/mirdata-notebooks/blob/master/Tonality_classicalDB/ClassicalDB_spectrum_features.ipynb
https://github.com/mir-dataset-loaders/mirdata-notebooks/blob/master/Tonality_classicalDB/ClassicalDB_spectrum_features.ipynb
https://github.com/mir-dataset-loaders/mirdata-notebooks/blob/master/Tonality_classicalDB/ClassicalDB_HPCP_features.ipynb
https://github.com/mir-dataset-loaders/mirdata-notebooks/blob/master/Tonality_classicalDB/ClassicalDB_HPCP_features.ipynb
https://github.com/mir-dataset-loaders/mirdata-notebooks/blob/master/Tonality_classicalDB/ClassicalDB_musicbrainz_metadata.ipynb
https://github.com/mir-dataset-loaders/mirdata-notebooks/blob/master/Tonality_classicalDB/ClassicalDB_musicbrainz_metadata.ipynb

mirdata, Release 0.3.8

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
¢ cleanup (bool) — Whether to delete any zip/tar files after extracting.

e allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
¢ ValueError - if invalid keys are passed to partial_download
e I0Error - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

* splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

« split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

e AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

248 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

load_audio (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.tonality_classicaldb.load_audio

load_hpcp (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.tonality_classicaldb.load_hpcp

load_key (*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.tonality_classicaldb.load_key

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError — If the dataset does not support Multitracks

load_musicbrainz(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.tonality_classicaldb.load_musicbrainz

load_spectrum(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.tonality_classicaldb.load_spectrum

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns list — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

e list - files which have an invalid checksum

class mirdata.datasets.tonality_classicaldb.Track(track_id, data_home, dataset_name, index,
metadata)
tonality_classicaldb track class

Parameters track_id (str) — track id of the track
Variables

* audio_path (str) — track audio path

» key_path (str) — key annotation path

e title (str) —title of the track

e track_id (str) - track id

Other Parameters

2.5. Dataset Loaders 249

mirdata, Release 0.3.8

* key (str) — key annotation

* spectrum (np.array) — computed audio spectrum

* hpcep (np.array) — computed hpcp

¢ musicbrainz_metadata (dict) — MusicBrainz metadata

property audio: Optional[Tuple[numpy.ndarray, float]]
The track’s audio

Returns
* np.ndarray - audio signal
¢ float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.tonality_classicaldb.load_audio(fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load a Tonality classicalDB audio file.

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.tonality_classicaldb.load_hpcp (fhandle: TextIO) — numpy.ndarray
Load Tonality classicalDB HPCP feature from a file

Parameters fhandle (str or file-like) — File-like object or path to HPCP file
Returns np.ndarray — loaded HPCP data

mirdata.datasets.tonality_classicaldb.load_key(fhandle: TextIO) — str
Load Tonality classicalDB format key data from a file

Parameters fhandle (str or file-like) — File-like object or path to key annotation file
Returns str — musical key data

mirdata.datasets.tonality_classicaldb.load_musicbrainz(fhandle: TextlO) — Dict[Any, Any]
Load Tonality classical DB musicbraiz metadata from a file

Parameters fhandle (str or file-like) — File-like object or path to musicbrainz metadata file
Returns dict — musicbrainz metadata

mirdata.datasets.tonality_classicaldb.load_spectrum(fhandle: TextlO) — numpy.ndarray
Load Tonality classicalDB spectrum data from a file

Parameters fhandle (str or file-like) — File-like object or path to spectrum file

Returns np.ndarray — spectrum data

250 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

2.5.51 tonas

TONAS Loader

Dataset Info

This dataset contains a music collection of 72 sung excerpts representative of three a cappella singing styles (Deblas,
and two variants of Martinete). It has been developed within the COFLA research project context. The distribution is
as follows: 1. 16 Deblas 2. 36 Martinete 1 3. 20 Martinete 2

This collection was built in the context of a study on similarity and style classification of flamenco a cappella singing
styles (Tonas) by the flamenco expert Dr. Joaquin Mora, Universidad de Sevilla.

We refer to (Mora et al. 2010) for a comprehensive description of the considered styles and their musical characteristics.
All 72 excerpts are monophonic, their average duration is 30 seconds and there is enough variability for a proper
evaluation of our methods, including a variety of singers, recording conditions, presence of percussion, clapping,
background voices and noise. We also provide manual melodic transcriptions, generated by the COFLA team and
Cristina L6pez Gémez.

The annotations are represented by specifying the value (in this case, Notes and FO) at the related timestamps. TONAS’
note and FO annotations also have “Energy” information, which refers to the average energy value through all the frames
in which a note or a FO value is comprised.

Using this dataset: TONAS dataset can be obtained upon request. Please refer to this link: https://zenodo.org/record/
1290722 to request access and follow the indications of the .download() method for a proper storing and organization
of the TONAS dataset.

Citing this dataset: When TONAS is used for academic research, we would highly appreciate if scientific publications
of works partly based on the TONAS dataset quote the following publication: - Music material: Mora, J., Gomez, F.,
Gomez, E., Escobar-Borrego, F.J., Diaz-Banez, J.M. (2010). Melodic Characterization and Similarity in A Cappella
Flamenco Cantes. 11th International Society for Music Information Retrieval Conference (ISMIR 2010). - Tran-
scriptions: Gomez, E., Bonada, J. (in Press). Towards Computer-Assisted Flamenco Transcription: An Experimental
Comparison of Automatic Transcription Algorithms As Applied to A Cappella Singing. Computer Music Journal.

class mirdata.datasets.tonas.Dataset (data_home=None, version="default")
The TONAS dataset

Variables
» data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
e bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None)—
e remotes (dict or None) - data to be downloaded
e readme (str) — information about the dataset
» track (function) — a function mapping a track_id to a mirdata.core.Track
» multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

2.5. Dataset Loaders 251

https://zenodo.org/record/1290722
https://zenodo.org/record/1290722

mirdata, Release 0.3.8

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=Fualse)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
e ValueError - if invalid keys are passed to partial_download
* IOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (list) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

252 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_audio(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.tonas.load_audio

load_£0(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.tonas.load_fO

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_notes(*args, **kwargs)
Deprecated since version 0.3.4: Use mirdata.datasets.tonas.load_notes

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns /ist — A list of track ids

validate(verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns
e list - files in the index but are missing locally

e list - files which have an invalid checksum

2.5.

Dataset Loaders 253

mirdata, Release 0.3.8

class mirdata.datasets.tonas.Track(track_id, data_home, dataset_name, index, metadata)
TONAS track class

Parameters
e track_id (str) — track id of the track

» data_home (str) — Local path where the dataset is stored. If None, looks for the data in the
default directory, ~/mir_datasets/TONAS

Variables

» f0_path (str) - local path where fO melody annotation file is stored

» notes_path (str) — local path where notation annotation file is stored

* audio_path (str) — local path where audio file is stored

e track_id (str) - track id

» singer (str) — performing singer (cantaor)

» title (str) — title of the track song

* tuning_frequency (float) — tuning frequency of the symbolic notation
Other Parameters

* f0_automatic (FOData) — automatically extracted fO

* f0_corrected (FOData) — manually corrected fO annotations

* notes (NoteData) — annotated notes

property audio: Tuple[numpy.ndarray, float]
The track’s audio

Returns
* np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.tonas.load_audio(fhandle: str) — Tuple[numpy.ndarray, float]
Load a TONAS audio file.

Parameters fhandle (str) — path to an audio file
Returns

* np.ndarray - the mono audio signal

* float - The sample rate of the audio file

mirdata.datasets.tonas.load_f£0(fpath: str, corrected: bool) — Optional[mirdata.annotations.FOData)
Load TONAS f0 annotations

254 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

Parameters
* fpath (str) — path pointing to fO annotation file

¢ corrected (bool) — if True, loads manually corrected frequency values otherwise, loads au-
tomatically extracted frequency values

Returns FOData — predominant fO melody

mirdata.datasets.tonas.load_notes(fhandle: TextlO) — Optional[mirdata.annotations.NoteData]
Load TONAS note data from the annotation files

Parameters fhandle (str or file-like) — path or file-like object pointing to a notes annotation file

Returns NoteData — note annotations

2.5.52 vocadito

vocadito Dataset Loader

Dataset Info

vocadito is a dataset of 40 short excerpts of solo, monophonic singing. The excerpts are sung in 7 different languages
by singers with varying of levels of training, and are recorded on a variety of devices.

Annotations are labeled by trained musicians. For each excerpt, we provide:
frame-level fO annotations 2 versions of note annotations (from 2 different annotators) lyrics language

For more details, please visit: https://zenodo.org/record/5578807

class mirdata.datasets.vocadito.Dataset (data_home=None, version="default")
The vocadito dataset

Variables
* data_home (str) — path where mirdata will look for the dataset
e version (str) —
e name (str) — the identifier of the dataset
* bibtex (str or None) — dataset citation/s in bibtex format
e indexes (dict or None)—
e remotes (dict or None) - data to be downloaded
* readme (str) — information about the dataset
* track (function) — a function mapping a track_id to a mirdata.core.Track
* multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

2.5. Dataset Loaders 255

https://zenodo.org/record/5578807

mirdata, Release 0.3.8

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns szr — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=False)
Download data to save_dir and optionally print a message.

Parameters

* partial_download (l/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

« force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
* ValueError - if invalid keys are passed to partial_download
e TOError — if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

» AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

256 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* split_names (/ist) — list of keys to use in the output dictionary

Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

¢ AttributeError — If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits

Returns dict — splits, keyed by split name and with values of lists of track_ids

license()

Print the license

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}

Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}

Raises NotImplementedError - If the dataset does not support Tracks

mtrack_ids

Return track ids

Returns /ist — A list of track ids

track_ids

Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output

Returns

class mirdata.datasets.vocadito.Track(track_id, data_home, dataset_name, index, metadata)

* list - files in the index but are missing locally

e list - files which have an invalid checksum

vocadito Track class

Parameters track_id (str) — track id of the track

Variables

audio_path (str) — path to the track’s audio file

f0_path (str) — path to the track’s fO annotation file

lyrics_path (str) — path to the track’s lyric annotation file

notes_al_path (str) — path to the track’s note annotation file for annotator A1l

notes_a2_path (str) — path to the track’s note annotation file for annotator A2

2.5. Dataset Loaders

257

mirdata, Release 0.3.8

e track_id (str) — track id
* singer_id (str) - singer id
* average_pitch_midi (int) — Average pitch in midi, computed from the fO annotation
* language (str) — The track’s language. May contain multiple languages.
Other Parameters
* f0 (FOData) — human-annotated singing voice pitch
o lyrics (List[List[str]]) — human-annotated lyrics
* notes_al (NoteData) — human-annotated notes by annotator A1l
* notes_a2 (NoteData) — human-annotated notes by annotator A2

property audio: Optional[Tuple[numpy.ndarray, float]]
solo vocal audio (mono)

Returns
 np.ndarray - audio signal
* float - sample rate

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

to_jams ()
Get the track’s data in jams format

Returns jams.JAMS — the track’s data in jams format

mirdata.datasets.vocadito.load_audio(fhandle: BinarylO) — Tuple[numpy.ndarray, float]
Load vocadito vocal audio

Parameters fhandle (str or file-like) — File-like object or path to audio file
Returns

* np.ndarray - audio signal

* float - sample rate

mirdata.datasets.vocadito.load_£0(fhandle: TextIO) — mirdata.annotations.FOData
Load a vocadito fO annotation

Parameters fhandle (str or file-like) — File-like object or path to fO annotation file
Raises IOError - If fO_path does not exist
Returns FOData — the fO annotation data

mirdata.datasets.vocadito.load_lyrics(fhandle: TextIO) — List[List[str]]
Load a lyrics annotation

Parameters fhandle (str or file-like) — File-like object or path to lyric annotation file
Raises IOError — if lyrics_path does not exist

Returns LyricData — lyric annotation data

258 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

mirdata.datasets.vocadito.load_notes(fhandle: TextIO) — Optional[mirdata.annotations.NoteData]

load a note annotation file

Parameters fhandle (str or file-like) — str or file-like to note annotation file

Raises IOError — if file doesn’t exist

Returns NoteData — note annotation

2.6 Core

Core mirdata classes

class mirdata.core.Dataset (data_home=None, version="default', name=None, track_class=None,

multitrack_class=None, bibtex=None, indexes=None, remotes=None,
download_info=None, license_info=None)

mirdata Dataset class

Variables

__init__ (data_home=None, version="default', name=None, track_class=None, multitrack_class=None,

data_home (str) — path where mirdata will look for the dataset

version (str) —

name (str) — the identifier of the dataset

bibtex (str or None) - dataset citation/s in bibtex format

indexes (dict or None)—

remotes (dict or None) - data to be downloaded

readme (str) — information about the dataset

track (function) — a function mapping a track_id to a mirdata.core.Track

multitrack (function) — a function mapping a mtrack_id to a mirdata.core.Multitrack

bibtex=None, indexes=None, remotes=None, download_info=None, license_info=None)
Dataset init method

Parameters

* data_home (str or None) — path where mirdata will look for the dataset
e name (str or None) — the identifier of the dataset

e track_class (mirdata.core.Track or None) — a Track class

o multitrack_class (mirdata.core.Multitrack or None) — a Multitrack class
¢ bibtex (str or None) — dataset citation/s in bibtex format

* remotes (dict or None) — data to be downloaded

¢ download_info (str or None) — download instructions or caveats

¢ license_info (str or None) — license of the dataset

choice_multitrack()
Choose a random multitrack

Returns Multitrack — a Multitrack object instantiated by a random mtrack_id

2.6. Core

259

mirdata, Release 0.3.8

choice_track()
Choose a random track

Returns Track — a Track object instantiated by a random track_id

cite()
Print the reference

property default_path
Get the default path for the dataset

Returns str — Local path to the dataset

download (partial_download=None, force_overwrite=False, cleanup=False, allow_invalid_checksum=Fualse)
Download data to save_dir and optionally print a message.

Parameters

« partial_download (/ist or None) — A list of keys of remotes to partially download. If None,
all data is downloaded

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete any zip/tar files after extracting.

¢ allow_invalid_checksum (bool) — Allow invalid checksums of the downloaded data. Use-
ful sometimes behind some proxies that inspection the downloaded data. When having a
different checksum promts a warn instead of raising an exception

Raises
e ValueError - if invalid keys are passed to partial_download
* IOError - if a downloaded file’s checksum is different from expected

get_mtrack_splits()
Get predetermined multitrack splits (e.g. train/ test) released alongside this dataset.

Raises

e AttributeError - If this dataset does not have multitracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of mtrack_ids

get_random_mtrack_splits(splits, seed=42, split_names=None)
Split the multitracks into partitions, e.g. training, validation, test

Parameters

« splits (list of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (list) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_random_track_splits(splits, seed=42, split_names=None)
Split the tracks into partitions e.g. training, validation, test

Parameters

260 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* splits (/ist of float) — a list of floats that should sum up 1. It will return as many splits as
elements in the list

* seed (int) — the seed used for the random generator, in order to enhance reproducibility.
Defaults to 42

* split_names (/ist) — list of keys to use in the output dictionary
Returns dict — a dictionary containing the elements in each split

get_track_splits()
Get predetermined track splits (e.g. train/ test) released alongside this dataset

Raises

* AttributeError - If this dataset does not have tracks

¢ NotImplementedError — If this dataset does not have predetermined splits
Returns dict — splits, keyed by split name and with values of lists of track_ids

license()
Print the license

load_multitracks()
Load all multitracks in the dataset

Returns dict — {mtrack_id: multitrack data}
Raises NotImplementedError - If the dataset does not support Multitracks

load_tracks()
Load all tracks in the dataset

Returns dict — {track_id: track data}
Raises NotImplementedError — If the dataset does not support Tracks

mtrack_ids
Return track ids

Returns /ist — A list of track ids

track_ids
Return track ids

Returns list — A list of track ids

validate (verbose=True)
Validate if the stored dataset is a valid version

Parameters verbose (bool) — If False, don’t print output
Returns

* list - files in the index but are missing locally

* list - files which have an invalid checksum

class mirdata.core.Index(filename: str, url: Optional[str] = None, checksum: Optional[str] = None,
partial_download: Optional[List[str]] = None)
Class for storing information about dataset indexes.

Parameters
* filename (str) — The index filename (not path), e.g. “example_dataset_index_1.2.json”

* url (str or None) — None if index is not remote, or a url to download from

2.6. Core 261

mirdata, Release 0.3.8

¢ checksum (str or None) — None if index is not remote, or the mdS checksum of the file

* partial_download (list or None) — if provided, specifies a subset of Dataset.remotes corre-
sponding to this index to be downloaded. If None, all Dataset.remotes will be downloaded
when calling Dataset.download()

Variables

e remote (download_utils.RemoteFilelMetadata or None) — None if index is not re-
mote, or a RemoteFileMetadata object

» partial_download (1ist or None)— a list of keys to partially download, or None

get_path(data_home: str) — str
Get the absolute path to the index file

Parameters data_home (str) — Path where the dataset’s data lives
Returns stzr — absolute path to the index file

class mirdata.core.MultiTrack(mtrack_id, data_home, dataset_name, index, track_class, metadata)
MultiTrack class.

A multitrack class is a collection of track objects and their associated audio that can be mixed together. A
multitrack is itself a Track, and can have its own associated audio (such as a mastered mix), its own metadata
and its own annotations.

__init__ (mtrack_id, data_home, dataset_name, index, track_class, metadata)
Multitrack init method. Sets boilerplate attributes, including:

e mtrack_id

* _dataset_name

e _data_home

e _multitrack_paths

e multitrack_metadata

Parameters
e mtrack_id (str) — multitrack id
¢ data_home (str) — path where mirdata will look for the dataset
¢ dataset_name (szr) — the identifier of the dataset
¢ index (dict) — the dataset’s file index
* metadata (function or None) — a function returning a dictionary of metadata or None

get_mix()
Create a linear mixture given a subset of tracks.
Parameters track_keys (list) — list of track keys to mix together
Returns np.ndarray — mixture audio with shape (n_samples, n_channels)

get_path(key)
Get absolute path to multitrack audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type

Returns str or None — joined path string or None

262 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

get_random_target (n_tracks=None, min_weight=0.3, max_weight=1.0)
Get a random target by combining a random selection of tracks with random weights

Parameters
 n_tracks (int or None) — number of tracks to randomly mix. If None, uses all tracks
* min_weight (float) — minimum possible weight when mixing
* max_weight (float) — maximum possible weight when mixing
Returns
* np.ndarray - mixture audio with shape (n_samples, n_channels)
e list - list of keys of included tracks
* list - list of weights used to mix tracks

get_target (track_keys, weights=None, average=True, enforce_length=True)
Get target which is a linear mixture of tracks

Parameters
* track_keys (l/ist) — list of track keys to mix together
» weights (list or None) — list of positive scalars to be used in the average

* average (bool) — if True, computes a weighted average of the tracks if False, computes a
weighted sum of the tracks

« enforce_length (bool) — If True, raises ValueError if the tracks are not the same length. If
False, pads audio with zeros to match the length of the longest track

Returns np.ndarray — target audio with shape (n_channels, n_samples)

Raises ValueError - if sample rates of the tracks are not equal if enforce_length=True and
lengths are not equal

class mirdata.core.Track(track_id, data_home, dataset_name, index, metadata)
Track base class

See the docs for each dataset loader’s Track class for details

__init__ (track_id, data_home, dataset_name, index, metadata)
Track init method. Sets boilerplate attributes, including:

e track_id

e _dataset_name
e _data_home

e _track_paths

e _track_metadata

Parameters
e track_id (str) — track id
* data_home (str) — path where mirdata will look for the dataset
¢ dataset_name (str) — the identifier of the dataset
* index (dict) — the dataset’s file index

* metadata (function or None) — a function returning a dictionary of metadata or None

2.6. Core 263

mirdata, Release 0.3.8

get_path(key)
Get absolute path to track audio and annotations. Returns None if the path in the index is None

Parameters key (string) — Index key of the audio or annotation type
Returns str or None — joined path string or None

class mirdata.core.cached_property (func)
Cached propery decorator

A property that is only computed once per instance and then replaces itself with an ordinary at-
tribute. Deleting the attribute resets the property. Source: https://github.com/bottlepy/bottle/commit/
fa7733e075da0d790d809aa3d2f53071897e6f76

mirdata.core.docstring_inherit (parent)
Decorator function to inherit docstrings from the parent class.

Adds documented Attributes from the parent to the child docs.

2.7 Annotations

mirdata annotation data types

mirdata.annotations.AMPLITUDE_UNITS = {'binary': '® or 1', 'energy': 'energy value,
measured as the sum of a squared signal', 'likelihood': 'score between 0 and 1',
'velocity': 'MIDI velocity between ® and 127'}

Amplitude/voicing units

class mirdata.annotations.Annotation
Annotation base class

mirdata.annotations.BEAT_POSITION_UNITS = {'bar_fraction': 'beat position as fractions
of bars, e.g. 0.25', 'bar_index': 'beat index within a bar, 1-indexed’,
'global_fraction': ‘'bar_frac, but where the integer part indicates the bar. e.g. 4.25',
'global_index': 'beat index within full track, l-indexed'}

Beat position units

class mirdata.annotations.BeatData(times, time_unit, positions, position_unit, confidence=None,
confidence_unit=None)
BeatData class

Variables
* times (np.ndarray) — array of time stamps with positive, strictly increasing values
e time_unit (str) - time unit, one of TIME_UNITS

* positions (np.ndarray) — array of beat positions in the format of position_unit. For all
units, values of 0 indicate beats which fall outside of a measure.

* position_unit (str)— beat position unit, one of BEAT_POSITION_UNITS
» confidence (np.ndarray) — array of confidence values
» confidence_unit (str) — confidence unit, one of AMPLITUDE_UNITS

mirdata.annotations.CHORD_UNITS = {'harte': 'chords in harte format, e.g. Ab:maj7',
'jams': "chords in jams 'chord' format", 'open': 'no strict schema or units'}
Chord units

264 Chapter 2. Contributing to mirdata

https://github.com/bottlepy/bottle/commit/fa7733e075da0d790d809aa3d2f53071897e6f76
https://github.com/bottlepy/bottle/commit/fa7733e075da0d790d809aa3d2f53071897e6f76

mirdata, Release 0.3.8

class mirdata.annotations.ChordData (intervals, interval_unit, labels, label_unit, confidence=None,
confidence_unit=None)
ChordData class

Variables

* intervals (np.ndarray) — (n x 2) array of intervals in the form [start_time, end_time].
Times should be positive and intervals should have non-negative duration

e interval_unit (str) — unit of the time values in intervals. One of TIME_UNITS.

* labels (1ist) — list chord labels (as strings)

e label_unit (str) - chord label schema

» confidence (np.ndarray or None)— array of confidence values

» confidence_unit (str or None) — confidence unit, one of AMPLITUDE_UNITS

mirdata.annotations.EVENT_UNITS = {'open': 'no scrict schema or units'}
Event units

class mirdata.annotations.EventData (intervals, interval_unit, events, event_unit)
EventData class

Variables

» intervals (np.ndarray) — (n x 2) array of intervals in the form [start_time, end_time].
Times should be positive and intervals should have non-negative duration

e interval_unit (str) — unit of the time values in intervals. One of TIME_UNITS.
e interval_unit — interval units, one of TIME_UNITS

* events (list) — list of event labels (as strings)

e event_unit (str) — event units, one of EVENT_UNITS

class mirdata.annotations.FOData (times, time_unit, frequencies, frequency_unit, voicing, voicing_unit,
confidence=None, confidence_unit=None)
FOData class

Variables

* times (np.ndarray) — array of time stamps (as floats) with positive, strictly increasing
values

e time_unit (str) - time unit, one of TIME_UNITS
» frequencies (np.ndarray) — array of frequency values (as floats)
» frequency_unit (str) - frequency unit, one of PITCH_UNITS

* voicing (np.ndarray) — array of voicing values, indicating whether or not a time frame
has an active pitch

* voicing_unit (str) - voicing unit, one of VOICING_UNITS
» confidence (np.ndarray or None) - array of confidence values
e confidence_unit (str or None) - confidence unit, one of AMPLITUDE_UNITS

resample (times_new, times_new_unit)
Resample the annotation to a new time scale. This function is adapted from: https://github.com/craffel/
mir_eval/blob/master/mir_eval/melody.py#L.212

Parameters

2.7. Annotations 265

https://github.com/craffel/mir_eval/blob/master/mir_eval/melody.py#L212
https://github.com/craffel/mir_eval/blob/master/mir_eval/melody.py#L212

mirdata, Release 0.3.8

* times_new (np.ndarray) — new time base, in units of times_new_unit
e times_new_unit (str) — time unit, one of TIME_UNITS
Returns FOData — FO data sampled at new time scale

to_matrix(time_scale, time_scale_unit, frequency_scale, frequency_scale_unit, amplitude_unit="binary")
Convert fO data to a matrix (piano roll) defined by a time and frequency scale

Parameters
 time_scale (np.array) — times in units time_unit
¢ time_scale_unit (szr) — time scale units, one of TIME_UNITS
* frequency_scale (np.array) — frequencies in frequency_unit
* frequency_scale_unit (str) — frequency scale units, one of PITCH_UNITS

o amplitude_unit (str) — amplitude units, one of AMPLITUDE_UNITS Defaults to “bi-
nary”.

Returns np.ndarray — 2D matrix of shape len(time_scale) x len(frequency_scale)

to_mir_eval)
Convert units and format to what is expected by mir_eval.melody.evaluate

Returns
e times (np.ndarray) - uniformly spaced times in seconds
* frequencies (np.ndarray) - frequency values in hz
* voicing (np.ndarray) - voicings, as likelihood values

to_multif®()
Convert annotation to multifO format

Returns MultiFOData — data in multifO format

to_sparse_index (time_scale, time_scale_unit, frequency_scale, frequency_scale_unit,
amplitude_unit="binary")
Convert FO annotation to sparse matrix indices for a time-frequency matrix.

Parameters
* time_scale (np.array) — times in units time_unit
¢ time_scale_unit (szr) — time scale units, one of TIME_UNITS
* frequency_scale (np.array) — frequencies in frequency_unit
* frequency_scale_unit (str) — frequency scale units, one of PITCH_UNITS

» amplitude_unit (str) — amplitude units, one of AMPLITUDE_UNITS Defaults to “bi-
nary”.

Returns ** sparse_index (np.ndarray)* — Array of sparce indices [(time_index, fre-
quency_index)] * amplitude (np.ndarray): Array of amplitude values for each index

mirdata.annotations.KEY_UNITS = {'key_mode': 'key labels in key-mode format, e.g.
G#:minor'}

Key units
class mirdata.annotations.KeyData(intervals, interval_unit, keys, key_unit)

KeyData class

Variables

266 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

» intervals (np.ndarray) — (n x 2) array of intervals in the form [start_time, end_time].
Times should be positive and intervals should have non-negative duration

e interval_unit (str) — unit of the time values in intervals. One of TIME_UNITS.
* keys (1ist) — list key labels (as strings)
* key_unit (str) — key unit, one of KEY_UNITS

mirdata.annotations.LYRIC_UNITS = {'pronunciations_open': 'lyric pronunciations, no
strict schema', 'syllable_open': 'lyrics segmented by syllable, no strict schema',
'words': 'lyrics as words or phrases'}

Lyric units

class mirdata.annotations.LyricData(intervals, interval_unit, lyrics, lyric_unit)
LyricData class

Variables

* intervals (np.ndarray) — (n x 2) array of intervals in the form [start_time, end_time].
Times should be positive and intervals should have non-negative duration

e interval_unit (str) — unit of the time values in intervals. One of TIME_UNITS.
e lyrics (1list) - list of lyrics (as strings)
e lyric_unit (str) - lyric unit, one of LYRIC_UNITS

class mirdata.annotations.MultiF®Data (times, time_unit, frequency_list, frequency_unit,
confidence_list=None, confidence_unit=None)
MultiFOData class

Variables

* times (np.ndarray) — array of time stamps (as floats) with positive, strictly increasing
values

e time_unit (str) — time unit, one of TIME_UNITS

» frequency_list (1ist) — list of lists of frequency values (as floats)

» frequency_unit (str) - frequency unit, one of PITCH_UNITS

e confidence_list (np.ndarray or None) - list of lists of confidence values

» confidence_unit (str or None) - confidence unit, one of AMPLITUDE_UNITS

resample (times_new, times_new_unit)
Resample annotation to a new time scale. This function is adapted from: https://github.com/craffel/mir_
eval/blob/master/mir_eval/multipitch.py#L104

Parameters

* times_new (np.array) — array of new time scale values

¢ times_new_unit (str) — units for new time scale, one of TIME_UNITS
Returns MultiFOData — the resampled annotation

to_matrix(time_scale, time_scale_unit, frequency_scale, frequency_scale_unit, amplitude_unit="binary")
Convert fO data to a matrix (piano roll) defined by a time and frequency scale

Parameters
e time_scale (np.array) — times in units time_unit

e time_scale_unit (str) — time scale units, one of TIME_UNITS

2.7. Annotations 267

https://github.com/craffel/mir_eval/blob/master/mir_eval/multipitch.py#L104
https://github.com/craffel/mir_eval/blob/master/mir_eval/multipitch.py#L104

mirdata, Release 0.3.8

* frequency_scale (np.array) — frequencies in frequency_unit
* frequency_scale_unit (str) — frequency scale units, one of PITCH_UNITS
e amplitude_unit (str) — amplitude units, one of AMPLITUDE_UNITS Defaults to “bi-

th)

nary”.
Returns np.ndarray — 2D matrix of shape len(time_scale) x len(frequency_scale)

to_mir_eval()
Convert annotation into the format expected by mir_eval.multipitch.evaluate

Returns ** times (np.ndarray)* — array of uniformly spaced time stamps in seconds * fre-
quency_list (list): list of np.array of frequency values in Hz

to_sparse_index (time_scale, time_scale_unit, frequency_scale, frequency_scale_unit,
amplitude_unit='binary")
Convert MultiFO annotation to sparse matrix indices for a time-frequency matrix.

Parameters
* time_scale (np.array) — times in units time_unit
¢ time_scale_unit (s7r) — time scale units, one of TIME_UNITS
* frequency_scale (np.array) — frequencies in frequency_unit
* frequency_scale_unit (str) — frequency scale units, one of PITCH_UNITS
* amplitude_unit (str) — amplitude units, one of AMPLITUDE_UNITS Defaults to “bi-

th)

nary”.

Returns ** sparse_index (np.ndarray)* — Array of sparce indices [(time_index, fre-
quency_index)] * amplitude (np.ndarray): Array of amplitude values for each index

class mirdata.annotations.NoteData(intervals: numpy.ndarray, interval_unit: str, pitches: numpy.ndarray,
pitch_unit: str, confidence: Optional[numpy.ndarray] = None,
confidence_unit: Optional[str] = None)
NoteData class

Variables

* intervals (np.ndarray) — (n x 2) array of intervals in the form [start_time, end_time].
Times should be positive and intervals should have non-negative duration

e interval_unit (str) - unit of the time values in intervals. One of TIME_UNITS.
o pitches (np.ndarray) — array of pitches

e pitch_unit (str) — note unit, one of PITCH_UNITS

» confidence (np.ndarray or None) - array of confidence values

e confidence_unit (str or None) - confidence unit, one of AMPLITUDE_UNITS

to_matrix (time_scale: numpy.ndarray, time_scale_unit: str, frequency_scale: numpy.ndarray,
[frequency_scale_unit: str, amplitude_unit: str = 'binary’, onsets_only: bool = False) —
numpy.ndarray
Convert fO data to a matrix (piano roll) defined by a time and frequency scale

Parameters
e time_scale (np.ndarray) — array of matrix time stamps in seconds
¢ time_scale_unit (s7r) — units for time scale values, one of TIME_UNITS

* frequency_scale (np.ndarray) — array of matrix frequency values in seconds

268 Chapter 2. Contributing to mirdata

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

* frequency_scale_unit (str) — units for frequency scale values, one of PITCH_UNITS
* onsets_only (bool, optional) — If True, returns an onset piano roll. Defaults to False.
Returns np.ndarray — 2D matrix of shape len(time_scale) x len(frequency_scale)

to_mir_eval ()
Convert data to the format expected by mir_eval.transcription.evaluate and
mir_eval.transcription_velocity.evaluate

Returns
* intervals (np.ndarray) - (n x 2) array of intervals of start time, end time in seconds
* pitches (np.ndarray) - array of pitch values in hz
* velocity (optional, np.ndarray) - array of velocity values between 0 and 127

to_multif® (sime_hop: float, time_hop_unit: str, max_time: Optional[float] = None) —
mirdata.annotations. MultiFOData
Convert note annotation to multiple fO format.

Parameters
* time_hop (float) — time between time stamps in multifO annotation
¢ time_hop_unit (str) — unit for time_hop, and resulting multifO data. One of TIME_UNITS

* max_time (float, optional) — Maximum time stamp in time_hop units. Defaults to None,
in which case the maximum note interval time is used.

Returns MultiFOData — multifO annotation

to_sparse_index (time_scale: numpy.ndarray, time_scale_unit: str, frequency_scale: numpy.ndarray,
frequency_scale_unit: str, amplitude_unit: str = 'binary’, onsets_only: bool = False) —
Tuple[numpy.ndarray, numpy.ndarray]
Convert note annotations to indexes of a sparse matrix (piano roll)

Parameters
* time_scale (np.array) — array of matrix time stamps in seconds
¢ time_scale_unit (s7r) — units for time scale values, one of TIME_UNITS
* frequency_scale (np.array) — array of matrix frequency values in seconds
¢ frequency_scale_unit (str) — units for frequency scale values, one of PITCH_UNITS

» amplitude_unit (st7) — units for amplitude values, one of AMPLITUDE_UNITS. Defaults
to “binary”.

* onsets_only (bool, optional) — If True, returns an onset piano roll. Defaults to False.

Returns ** sparse_index (np.ndarray)* — Array of sparce indices [(time_index, fre-
quency_index)] * amplitude (np.ndarray): Array of amplitude values for each index

mirdata.annotations.PITCH_UNITS = {'hz': ‘'hertz', 'midi': 'MIDI note number’,
'note_name': 'pc with octave, e.g. Ab4', 'pc': 'pitch class, e.g. G#'}
Pitch units

mirdata.annotations.SECTION_UNITS = {'open': 'no scrict schema or units'}
Section units

class mirdata.annotations.SectionData (intervals, interval_unit, labels=None, label_unit=None)
SectionData class

Variables

2.7. Annotations 269

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

mirdata, Release 0.3.8

» intervals (np.ndarray) — (n x 2) array of intervals in the form [start_time, end_time].
Times should be positive and intervals should have non-negative duration

e interval_unit (str) — unit of the time values in intervals. One of TIME_UNITS.
e labels (1ist or None) - list of section labels

e label_unit (str or None) - label unit, one of SECTION_UNITS

mirdata.annotations.TEMPO_UNITS = {'bpm': 'beats per minute'}

Tempo units
mirdata.annotations.TIME_UNITS = {'ms': 'miliseconds', 's': 'seconds', 'ticks': 'MIDI
ticks'}

Time units

class mirdata.annotations.TempoData (intervals, interval_unit, tempos, tempo_unit, confidence=None,
confidence_unit=None)
TempoData class

Variables

» intervals (np.ndarray) — (n x 2) array of intervals in the form [start_time, end_time].
Times should be positive and intervals should have non-negative duration

e interval_unit (str) — unit of the time values in intervals. One of TIME_UNITS.

* tempos (list) — array of tempo values (as floats)

* tempo_unit (str)— tempo unit, one of TEMPO_UNITS

» confidence (np.ndarray or None)— array of confidence values

» confidence_unit (str or None) — confidence unit, one of AMPLITUDE_UNITS

mirdata.annotations.VOICING_UNITS = {'binary': '@ or 1', 'likelihood': 'score between 0
and 1'}
Voicing units

mirdata.annotations.closest_index(input_array, target_array)
Get array of indices of target_array that are closest to the input_array

Parameters

* input_array (np.ndarray) — (n x 2) array of input values

* target_array (np.ndarray) — (m x 2) array of target values)
Returns np.ndarray — array of shape (n x 1) of indexes into target_array

mirdata.annotations.convert_amplitude_units (amplitude, amplitude_unit, target_amplitude_unit)
Convert amplitude values to likelihoods

Parameters

» amplitude (np.array) — array of amplitude values

o amplitude_unit (str) — unit of amplitude, one of AMPLITUDE_UNITS

* target_amplitude_unit (s7r) — target unit of amplitude, one of AMPLITUDE_UNITS
Raises NotImplementedError — If conversion is not supported
Returns np.array — array of amplitude values as in target amplitude unit

mirdata.annotations.convert_pitch_units(pitches, pitch_unit, target_pitch_unit)
Convert pitch values from pitch_unit to target_pitch_unit

270 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Parameters

* pitches (np.array) — array of pitch values

* pitch_unit (str) — unit of pitch, one of PITCH_UNITS

* target_pitch_unit (str) — target unit of pitch, one of PITCH_UNITS
Raises NotImplementedError — If conversion between given units is not supported
Returns np.array — array of pitch values in target_pitch_unit

mirdata.annotations.convert_time_units(times, time_unit, target_time_unit)
Convert a time array from time_unit to target_time_unit

Parameters

* times (np.ndarray) — array of time values in units time_unit

e time_unit (str) — time unit, one of TIME_UNITS

* target_time_unit (str) — new time unit, one of TIME_UNITS
Raises ValueError - If time units are not convertable
Returns np.ndarray — times in units target_time_unit

mirdata.annotations.validate_array_like(array_like, expected_type, expected_dtype,
none_allowed=False)
Validate that array-like object is well formed

If array_like is None, validation passes automatically.

Parameters
* array_like (array-like) — object to validate
* expected_type (rype) — expected type, either list or np.ndarray
* expected_dtype (type) — expected dtype
* none_allowed (bool) — if True, allows array to be None

Raises
* TypeError - if type/dtype does not match expected_type/expected_dtype
* ValueError - if array

mirdata.annotations.validate_beat_positions (positions, position_unit)
Validate if positions is well-formed.

Parameters

* positions (np.ndarray) — an array of positions values

* positions_unit (szr) — one of BEAT_POSITION_UNITS
Raises ValueError - if positions values are incompatible with the unit

mirdata.annotations.validate_chord_labels (chords, chord_unit)
Validate that chord labels conform to chord_unit namespace

Parameters
* chords (list) — list of chord labels as strings
* chord_unit (str) — chord namespace, e.g. “harte”

Raises ValueError - If chords don’t conform to namespace

2.7. Annotations 271

mirdata, Release 0.3.8

mirdata.annotations.validate_confidence (confidence, confidence_unit)
Validate if confidence is well-formed.

If confidence is None, validation passes automatically
Parameters
* confidence (np.ndarray) — an array of confidence values
 confidence_unit (str) — one of AMPLITUDE_UNITS
Raises ValueError - if confidence values are incompatible with the unit

mirdata.annotations.validate_intervals (intervals, interval_unit)
Validate if intervals are well-formed.

If intervals is None, validation passes automatically
Parameters
* intervals (np.ndarray) — (n x 2) array
e interval_unit (str) — interval unit, one of TIME_UNITS

Raises

* ValueError - if intervals have an invalid shape, have negative values

e or if end times are smaller than start times. —

mirdata.annotations.validate_key_labels(keys, key_unit)
Validate that key labels conform to key_unit namespace

Parameters

* keys (l/ist) — list of key labels as strings

* key_unit (str) — key namespace, e.g. “harte”
Raises ValueError — If keys don’t conform to namespace

mirdata.annotations.validate_lengths_equal (array_list)
Validate that arrays in list are equal in length

Some arrays may be None, and the validation for these are skipped.
Parameters array_list (/ist) — list of array-like objects
Raises ValueError — if arrays are not equal in length

mirdata.annotations.validate_pitches (pitches, pitch_unit)
Validate if pitches are well-formed.

Parameters

* pitches (np.ndarray) — an array of pitch values

e pitch_unit (str) — pitch unit, one of PITCH_UNITS
Raises ValueError — if pitches do not correspond to the unit

mirdata.annotations.validate_tempos (tempo, tempo_unit)
Validate if tempos are well-formed

Parameters
* tempo (list) — list of tempo values

* tempo_unit (str) — tempo unit, one of TEMPO_UNITS

272 Chapter 2.

Contributing to mirdata

mirdata, Release 0.3.8

Raises ValueError - if tempos are not well-formed

mirdata.annotations.validate_times (times, time_unit)
Validate if times are well-formed.

If times is None, validation passes automatically
Parameters
* times (np.ndarray) — an array of time stamps
e time_unit (str) — one of TIME_UNITS
Raises ValueError - if times have negative values or are non-increasing

mirdata.annotations.validate_unit (unit, unit_values, allow_none=False)
Validate that the given unit is one of the allowed unit values.

Parameters

e unit (str) — the unit name

* unit_values (dict) — dictionary of possible unit values

* allow_none (bool) — if true, allows unit=None to pass validation
Raises ValueError - If the given unit is not one of the allowed unit valuess

mirdata.annotations.validate_voicing (voicing, voicing_unit)
Validate if voicing is well-formed.

Parameters
* voicing (np.ndarray) — an array of voicing values
* voicing_unit (str) — one of VOICING_UNITS

Raises ValueError - if voicing values are incompatible with the unit

2.8 Advanced

2.8.1 mirdata.validate

Utility functions for mirdata

mirdata.validate.log_message(message, verbose=True)
Helper function to log message

Parameters
* message (str) — message to log
* verbose (bool) — if false, the message is not logged

mirdata.validate.md5 (file_path)
Get md5 hash of a file.

Parameters file_path (str) — File path
Returns str — md5 hash of data in file_path

mirdata.validate.validate(local_path, checksum)
Validate that a file exists and has the correct checksum

Parameters

2.8. Advanced

273

mirdata, Release 0.3.8

* local_path (str) — file path

¢ checksum (str) — md5 checksum
Returns

* bool - True if file exists

* bool - True if checksum matches

mirdata.validate.validate_files(file_dict, data_home, verbose)
Validate files

Parameters
* file_dict (dict) — dictionary of file information
* data_home (str) — path where the data lives
* verbose (bool) — if True, show progress
Returns
* dict - missing files
* dict - files with invalid checksums

mirdata.validate.validate_index (dataset index, data_home, verbose=True)
Validate files in a dataset’s index

Parameters
 dataset_index (/ist) — dataset indices
» data_home (str) — Local home path that the dataset is being stored
* verbose (bool) — if true, prints validation status while running
Returns
* dict - file paths that are in the index but missing locally
* dict - file paths with differing checksums

mirdata.validate.validate_metadata(file_dict, data_home, verbose)
Validate files

Parameters
* file_dict (dict) — dictionary of file information
* data_home (str) — path where the data lives
* verbose (bool) — if True, show progress
Returns
* dict - missing files
* dict - files with invalid checksums

mirdata.validate.validator (dataset _index, data_home, verbose=True)
Checks the existence and validity of files stored locally with respect to the paths and file checksums stored in the
reference index. Logs invalid checksums and missing files.

Parameters
 dataset_index (/ist) — dataset indices

» data_home (str) — Local home path that the dataset is being stored

274 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

* verbose (bool) — if True (default), prints missing and invalid files to stdout. Otherwise, this
function is equivalent to validate_index.

Returns
missing_files (list) —
List of file paths that are in the dataset index but missing locally.

invalid_checksums (list): List of file paths that file exists in the dataset index but has a dif-
ferent checksum compare to the reference checksum.

2.8.2 mirdata.download utils

Utilities for downloading from the web.

class mirdata.download_utils.DownloadProgressBar(*_, **)
Wrap tgdm to show download progress

class mirdata.download_utils.RemoteFileMetadata (filename, url, checksum, destination_dir=None,
unpack_directories=None)
The metadata for a remote file

Variables
o filename (str) — the remote file’s basename
e url (str) — the remote file’s url
e checksum (str) — the remote file’s md5 checksum
* destination_dir (str or None) - the relative path for where to save the file

* unpack_directories (list or None) — list of relative directories. For each directory
the contents will be moved to destination_dir (or data_home if not provieds)

mirdata.download_utils.download_from_remote (remote, save_dir, force_overwrite,
allow_invalid_checksum)
Download a remote dataset into path Fetch a dataset pointed by remote’s url, save into path using remote’s
filename and ensure its integrity based on the MD5 Checksum of the downloaded file.

Adapted from scikit-learn’s sklearn.datasets.base._fetch_remote.
Parameters

* remote (RemoteFileMetadata) — Named tuple containing remote dataset meta information:
url, filename and checksum

* save_dir (str) — Directory to save the file to. Usually data_home

* force_overwrite (bool) — If True, overwrite existing file with the downloaded file. If False,
does not overwrite, but checks that checksum is consistent.

Returns str — Full path of the created file.

mirdata.download_utils.download_tar_file (tar_remote, save_dir, force_overwrite, cleanup,
allow_invalid_checksum)
Download and untar a tar file.

Parameters
* tar_remote (RemoteFileMetadata) — Object containing download information

¢ save_dir (str) — Path to save downloaded file

2.8. Advanced 275

mirdata, Release 0.3.8

* force_overwrite (bool) — If True, overwrites existing files
* cleanup (bool) — If True, remove tarfile after untarring

mirdata.download_utils.download_zip_file(zip_remote, save_dir, force_overwrite, cleanup,
allow_invalid_checksum)
Download and unzip a zip file.

Parameters
* zip_remote (RemoteFileMetadata) — Object containing download information
 save_dir (str) — Path to save downloaded file
* force_overwrite (bool) — If True, overwrites existing files
* cleanup (bool) — If True, remove zipfile after unziping

mirdata.download_utils.downloader (save_dir, remotes=None, index=None, partial_download=None,
info_message=None, force_overwrite=False, cleanup=False,
allow_invalid_checksum=False)
Download data to save_dir and optionally log a message.

Parameters
* save_dir (str) — The directory to download the data

* remotes (dict or None) — A dictionary of RemoteFileMetadata tuples of data in zip format.
If None, there is no data to download

* index (core.Index) — A mirdata Index class, which may contain a remote index to be down-
loaded or a subset of remotes to download by default.

* partial_download (/ist or None) — A list of keys to partially download the remote objects of
the download dict. If None, all data specified by the index is downloaded

* info_message (str or None) — A string of info to log when this function is called. If None,
no string is logged.

* force_overwrite (bool) — If True, existing files are overwritten by the downloaded files.
* cleanup (bool) — Whether to delete the zip/tar file after extracting.

* allow_invalid_checksum (bool) — Allow having an invalid checksum, and whenever this
happens prompt a warning instead of deleting the files.

mirdata.download_utils.extractall_unicode(zfile, out_dir)
Extract all files inside a zip archive to a output directory.

In comparison to the zipfile, it checks for correct file name encoding
Parameters
» zfile (0bj) — Zip file object created with zipfile.ZipFile
 out_dir (str) — Output folder

mirdata.download_utils.move_directory_contents (source_dir, target_dir)
Move the contents of source_dir into target_dir, and delete source_dir

Parameters
* source_dir (str) — path to source directory

* target_dir (str) — path to target directory

276 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

mirdata.download_utils.untar (tar_path, cleanup)
Untar a tar file inside it’s current directory.

Parameters
* tar_path (str) — Path to tar file
* cleanup (bool) — If True, remove tarfile after untarring

mirdata.download_utils.unzip (zip_path, cleanup)
Unzip a zip file inside it’s current directory.

Parameters
* zip_path (str) — Path to zip file

* cleanup (bool) — If True, remove zipfile after unzipping

2.8.3 mirdata.jams_utils

Utilities for converting mirdata Annotation classes to jams format.

mirdata.jams_utils.beats_to_jams (beat_data, description=None)
Convert beat annotations into jams format.

Parameters
* beat_data (annotations.BeatData) — beat data object
* description (str) — annotation description

Returns jams.Annotation — jams annotation object.

mirdata.jams_utils.chords_to_jams (chord_data, description=None)
Convert chord annotations into jams format.

Parameters
 chord_data (annotations.ChordData) — chord data object
* description (str) — annotation description

Returns jams.Annotation — jams annotation object.

mirdata.jams_utils.events_to_jams (event_data, description=None)
Convert events annotations into jams format.

Parameters
* event_data (annotations.EventData) — event data object
* description (str) — annotation description

Returns jams.Annotation — jams annotation object.

mirdata.jams_utils.f0s_to_jams (f0_data, description=None)
Convert fO annotations into jams format.

Parameters
» f0_data (annotations.FOData) — fO annotation object
* description (str) — annotation descriptoin

Returns jams.Annotation — jams annotation object.

2.8. Advanced

277

mirdata, Release 0.3.8

mirdata.jams_utils. jams_converter (audio_path=None, spectrogram_path=None, beat_data=None,
chord_data=None, note_data=None, f0_data=None,
section_data=None, multi_section_data=None, tempo_data=None,
event_data=None, key_data=None, lyrics_data=None,
tags_gtzan_data=None, tags_open_data=None, metadata=None)
Convert annotations from a track to JAMS format.

Parameters

» audio_path (str or None) — A path to the corresponding audio file, or None. If provided,
the audio file will be read to compute the duration. If None, ‘duration’ must be a field in the
metadata dictionary, or the resulting jam object will not validate.

 spectrogram_path (str or None) — A path to the corresponding spectrum file, or None.

 beat_data (list or None) — A list of tuples of (annotations.BeatData, str), where str describes
the annotation (e.g. ‘beats_1").

* chord_data (list or None) — A list of tuples of (annotations.ChordData, str), where str de-
scribes the annotation.

* note_data (list or None) — A list of tuples of (annotations.NoteData, str), where str describes
the annotation.

» f0_data (list or None) — A list of tuples of (annotations.FOData, str), where str describes the
annotation.

* section_data (list or None) — A list of tuples of (annotations.SectionData, str), where str
describes the annotation.

* multi_section_data (list or None) — A list of tuples. Tuples in multi_section_data should
contain another list of tuples, indicating annotations in the different levels e.g. ([(segmentsO0,
level0), ‘(segments1, levell)], annotator) and a str indicating the annotator

» tempo_data (list or None) — A list of tuples of (float, str), where float gives the tempo in
bpm and str describes the annotation.

 event_data (list or None) — A list of tuples of (annotations.EventData, str), where str de-
scribes the annotation.

» key_data (list or None) — A list of tuples of (annotations.KeyData, str), where str describes
the annotation.

o lyrics_data (list or None) — A list of tuples of (annotations.LyricData, str), where str de-
scribes the annotation.

* tags_gtzan_data (list or None) — A list of tuples of (str, str), where the first srt is the tag and
the second is a descriptor of the annotation.

* tags_open_data (/ist or None) — A list of tuples of (str, str), where the first srt is the tag and
the second is a descriptor of the annotation.

* metadata (dict or None) — A dictionary containing the track metadata.
Returns jams.JAMS — A JAMS object containing the annotations.

mirdata.jams_utils.keys_to_jams (key_data, description)
Convert key annotations into jams format.

Parameters
» key_data (annotations.KeyData) — key data object

* description (str) — annotation description

278 Chapter 2. Contributing to mirdata

mirdata, Release 0.3.8

Returns jams.Annotation — jams annotation object.

mirdata.jams_utils.lyrics_to_jams (lyric_data, description=None)
Convert lyric annotations into jams format.

Parameters
* lyric_data (annotations.LyricData) — lyric annotation object
* description (str) — annotation descriptoin

Returns jams.Annotation — jams annotation object.

mirdata.jams_utils.multi_sections_to_jams (multisection_data, description)
Convert multi-section annotations into jams format.

Parameters
» multisection_data (/ist) — list of tuples of the form [(SectionData, int)]
* description (str) — annotation description

Returns jams.Annotation — jams annotation object.

mirdata.jams_utils.notes_to_jams (note_data, description)
Convert note annotations into jams format.

Parameters
* note_data (annotations.NoteData) — note data object
* description (sfr) — annotation description

Returns jams.Annotation — jams annotation object.

mirdata.jams_utils.sections_to_jams (section_data, description=None)
Convert section annotations into jams format.

Parameters
* section_data (annotations.SectionData) — section data object
* description (str) — annotation description

Returns jams.Annotation — jams annotation object.

mirdata.jams_utils.tag_to_jams (tag_data, namespace='"tag_open', description=None)
Convert lyric annotations into jams format.

Parameters
e lyric_data (annotations.LyricData) — lyric annotation object
* namespace (str) — the jams-compatible tag namespace
* description (str) — annotation descriptoin

Returns jams.Annotation — jams annotation object.

mirdata.jams_utils.tempos_to_jams (tempo_data, description=None)
Convert tempo annotations into jams format.

Parameters
* tempo_data (annotations.TempoData) — tempo data object
* description (str) — annotation description

Returns jams.Annotation — jams annotation object.

2.8. Advanced

279

mirdata, Release 0.3.8

2.9 Contributing

We encourage contributions to mirdata, especially new dataset loaders. To contribute a new loader, follow the steps
indi